Research Article
BibTex RIS Cite

ON DOUGLAS SPACES WITH VANISHING E-CURVATURE

Year 2012, Volume: 5 Issue: 1, 36 - 41, 30.04.2012

Abstract


References

  • [1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
  • [2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math. Debrecen. 42(1993), 139-144.
  • [3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen. 48(1996), 357-366.
  • [4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • [5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces, Publ. Math. Debrecen. 53(1998), 423-438.
  • [6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De- brecen. 71(2007), 253-260.
  • [7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8] Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
  • [9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
  • [10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non- Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
  • [11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants, Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
  • [12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
  • [14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72(2008), 1-15.
  • [15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc. 36(2010), no. 2, 57-73.
  • [16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
  • [17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and Physics, 60(2010), 1665-1670.
  • [18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
Year 2012, Volume: 5 Issue: 1, 36 - 41, 30.04.2012

Abstract

References

  • [1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
  • [2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math. Debrecen. 42(1993), 139-144.
  • [3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen. 48(1996), 357-366.
  • [4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • [5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces, Publ. Math. Debrecen. 53(1998), 423-438.
  • [6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De- brecen. 71(2007), 253-260.
  • [7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8] Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
  • [9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
  • [10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non- Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
  • [11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants, Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
  • [12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
  • [13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
  • [14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72(2008), 1-15.
  • [15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc. 36(2010), no. 2, 57-73.
  • [16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry: Methods and its Applications, 6(2010), 008.
  • [17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and Physics, 60(2010), 1665-1670.
  • [18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
There are 17 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

A. Tayebı This is me

E. Peyghan

Publication Date April 30, 2012
Published in Issue Year 2012 Volume: 5 Issue: 1

Cite

APA Tayebı, A., & Peyghan, E. (2012). ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry, 5(1), 36-41.
AMA Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. April 2012;5(1):36-41.
Chicago Tayebı, A., and E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5, no. 1 (April 2012): 36-41.
EndNote Tayebı A, Peyghan E (April 1, 2012) ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry 5 1 36–41.
IEEE A. Tayebı and E. Peyghan, “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”, Int. Electron. J. Geom., vol. 5, no. 1, pp. 36–41, 2012.
ISNAD Tayebı, A. - Peyghan, E. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5/1 (April 2012), 36-41.
JAMA Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5:36–41.
MLA Tayebı, A. and E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry, vol. 5, no. 1, 2012, pp. 36-41.
Vancouver Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5(1):36-41.