[1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical
Library, 2006.
[2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math.
Debrecen. 42(1993), 139-144.
[3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald
spaces, Publ. Math. Debrecen. 48(1996), 357-366.
[4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of
Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
[5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces,
Publ. Math. Debrecen. 53(1998), 423-438.
[6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De-
brecen. 71(2007), 253-260.
[7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8]
Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
[9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math.
Debrecen. 70(2007), 211-219.
[10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non-
Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
[11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants,
Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
[12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers,
Dordrecht, 2001.
[13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
[14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry,
Publ. Math. Debrecen. 72(2008), 1-15.
[15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc.
36(2010), no. 2, 57-73.
[16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry:
Methods and its Applications, 6(2010), 008.
[17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and
Physics, 60(2010), 1665-1670.
[18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
Year 2012,
Volume: 5 Issue: 1, 36 - 41, 30.04.2012
[1] Akbar-Zadeh, H., Initiation to Global Finslerian Geometry, North-Holland Mathematical
Library, 2006.
[2] Bácsó, S. Ilosvay, F. and Kis, B., Landsberg spaces with common geodesics, Publ. Math.
Debrecen. 42(1993), 139-144.
[3] Bácsó, S. and Matsumoto, M., Reduction theorems of certain Landsberg spaces to Berwald
spaces, Publ. Math. Debrecen. 48(1996), 357-366.
[4] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type, A generalization of notion of
Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
[5] Bácsó, S. and Matsumoto, M., On Finsler spaces of Douglas type II, Projectively flat spaces,
Publ. Math. Debrecen. 53(1998), 423-438.
[6] Bidabad, B. and Tayebi, A., A classification of some Finsler connections, Publ. Math. De-
brecen. 71(2007), 253-260.
[7] Chen, X. and Shen, Z., On Douglas metrics, Publ. Math. Debrecen. 66(2005), 503-512. [8]
Douglas, J., The general geometry of path, Ann. Math. 29(1927-28), 143-168.
[9] Najafi, B. Shen, Z. and Tayebi, A., On a projective class of Finsler metrics, Publ. Math.
Debrecen. 70(2007), 211-219.
[10] Najafi, B. Shen, Z. and Tayebi, A., Finsler metrics of scalar flag curvature with special non-
Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
[11] Najafi, B. and Tayebi, A. Finsler Metrics of scalar flag curvature and projective invariants,
Balkan Journal of Geometry and Its Applications, 15(2010), 90-99.
[12] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers,
Dordrecht, 2001.
[13] Shen, Z., Lectures on Finsler Geometry, World Scientific, Singapore, 2001.
[14] Tayebi, A. Azizpour, E. and Esrafilian, E., On a family of connections in Finsler geometry,
Publ. Math. Debrecen. 72(2008), 1-15.
[15] Tayebi, A. and Najafi, B., Shen’s processes on Finslerian connections, Bull. Iran. Math. Soc.
36(2010), no. 2, 57-73.
[16] Tayebi, A. and Peyghan, E., Special Berwald Metrics, Symmetry, Integrability and Geometry:
Methods and its Applications, 6(2010), 008.
[17] Tayebi, A. and Peyghan, E., On Ricci tensors of Randers metrics, Journal of Geometry and
Physics, 60(2010), 1665-1670.
[18] Weyl, H., Zur Infinitesimal geometrie, G¨ottinger Nachrichten. (1921), 99-112.
Tayebı, A., & Peyghan, E. (2012). ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry, 5(1), 36-41.
AMA
Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. April 2012;5(1):36-41.
Chicago
Tayebı, A., and E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5, no. 1 (April 2012): 36-41.
EndNote
Tayebı A, Peyghan E (April 1, 2012) ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. International Electronic Journal of Geometry 5 1 36–41.
IEEE
A. Tayebı and E. Peyghan, “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”, Int. Electron. J. Geom., vol. 5, no. 1, pp. 36–41, 2012.
ISNAD
Tayebı, A. - Peyghan, E. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry 5/1 (April 2012), 36-41.
JAMA
Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5:36–41.
MLA
Tayebı, A. and E. Peyghan. “ON DOUGLAS SPACES WITH VANISHING E-CURVATURE”. International Electronic Journal of Geometry, vol. 5, no. 1, 2012, pp. 36-41.
Vancouver
Tayebı A, Peyghan E. ON DOUGLAS SPACES WITH VANISHING E-CURVATURE. Int. Electron. J. Geom. 2012;5(1):36-41.