1. Bonacini, P., Laudal’s Lemma in positive characteristic, J. Algebraic Geom. 18 (2009), no. 3,
459–475.
2. Bonacini, P., On the plane section of an integral curve in positive characteristic, Proc. Am.
Math. Soc., 136 (2008), no.7, 2289–2297.
3. Ein, L., Stable vector bundles on projective spaces in char p > 0, Math. Ann., 254 (1980), no.
1, 53–72.
4. Geramita, A.V., Maroscia, P. and Roberts, L. G., The Hilbert function of a reduced k-algebra, J.
London Math. Soc., 28 2 (1983), 443–452.
5. Gruson, L. and Peskine, C., Section plane d’une courbe gauche: postulation, Enumerative Geometry
and Classical Algebraic Geometry (Nice, 1981), Progr. Math., no. 24, Birkh¨auser, Boston, Mass.,
1982, pp. 33—35.
6. Harris, J., The Genus of space curves, Math. Ann., 249 (1980), no. 3, 191-–204.
7. Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New
York, 1977.
8. Kleiman, S. L., Geometry on Grassmannians and applications to splitting bundles and smooth- ing
cycles, Inst. Hautes E´ tudes Sci. Publ. Math., No. 36 (1969), 281–297.
9. Langer, A., Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004) no. 1,
251–276.
10. Laudal, O. A., A generalized trisecant lemma, Algebraic Geometry (Proc. Sympos. Univ. Tromsø,
Tromsø, 1977), Lecture Notes in Math., no. 687, Springer-Verlag, Berlin, 1978, pp. 112-–149.
11. Maggioni, R. and Ragusa, A., The Hilbert function of generic plane sections of curves of P3,
Inv. Math., 91 (1988), 253—258.
12. Maggioni, R. and Ragusa, A., Construction of smooth curves of P3 with assigned Hilbert function
and generators’ degrees, Le Matematiche, 42 (1987), no. 1-2, 195–209 (1989).
13. Maruyama, M., Boundedness of semistable sheaves of small ranks, Nagoya Math. J., 78 (1980),
65–94.
14. Mehta, V. B. and Ramanathan, A., Homogeneous bundles in characteristic p, in Algebraic
geometry - open problems, Proc. Conf., Ravello/Italy 1982, Lect. Notes Math. 997, 315–320 (1983).
15. Mezzetti, E. and Raspanti, I., A Laudal-type theorem for surfaces in P4, Commutative algebra
and algebraic geometry, I (Italian) (Turin, 1990), Rend. Sem. Mat. Univ. Politec. Torino, 48
(1990), no. 4, 529–537 (1993).
16. Mezzetti, E., The border cases of the lifting theorem for surfaces in P4, J. Reine Angew.
Math., 433 (1992), 101–111.
17. Mezzetti, E., Differential-geometric methods for the lifting problem and linear systems on
plane curves, J. Algebraic Geom., 3 (1994), no. 3, 375–398.
18. Milne, J. S., ’Etale cohomology, Princeton Mathematical Series, no. 33, Princeton University
Press, Princeton, N.J., 1980.
19. Okonek, C., Schneider, M., Spindler, H., Vector bundles on complex projective spaces, Progress
in Mathematics, 3. Birkh¨auser, Boston, Mass., 1980.
20. Roggero, M., Sulle sezioni di un fascio riflessivo di rango 2 definenti sottovariet`a integre,
Boll. Un. Mat. Ital. D (6) 4 (1985), no. 1, 57–61 (1986).
21. Roggero, M., Lifting problem for codimension two subvarieties in Pn+2: border cases, Geo-
metric and combinatorial aspects of commutative algebra (Messina, 1999), 309–326, Lecture Notes in
Pure and Appl. Math., 217, Dekker, New York, 2001.
22. Roggero, M., Generalizations of “Laudal Trescano Lemma” to codimension 2 subvarieties in
PN , Quaderni del Dipartimento di Matematica di Torino 23/2003.
23. Shepherd-Barron, N. I., Semi-stability and reduction mod p, Topology, 37 (1998), 659–664.
24. Strano, R., On the hyperplane sections of curves, Proceedings of the Geometry Conference
(Milan and Gargnano, 1987), Rend. Sem. Mat. Fis. Milano, 57 (1987), 125–134 (1989).
25. Tortora, A., On the lifting problem in codimension two, (English summary) Matematiche
(Catania), 52 (1997), no. 1, 41–51 (1998).
Year 2012,
Volume: 5 Issue: 1, 128 - 139, 30.04.2012
1. Bonacini, P., Laudal’s Lemma in positive characteristic, J. Algebraic Geom. 18 (2009), no. 3,
459–475.
2. Bonacini, P., On the plane section of an integral curve in positive characteristic, Proc. Am.
Math. Soc., 136 (2008), no.7, 2289–2297.
3. Ein, L., Stable vector bundles on projective spaces in char p > 0, Math. Ann., 254 (1980), no.
1, 53–72.
4. Geramita, A.V., Maroscia, P. and Roberts, L. G., The Hilbert function of a reduced k-algebra, J.
London Math. Soc., 28 2 (1983), 443–452.
5. Gruson, L. and Peskine, C., Section plane d’une courbe gauche: postulation, Enumerative Geometry
and Classical Algebraic Geometry (Nice, 1981), Progr. Math., no. 24, Birkh¨auser, Boston, Mass.,
1982, pp. 33—35.
6. Harris, J., The Genus of space curves, Math. Ann., 249 (1980), no. 3, 191-–204.
7. Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New
York, 1977.
8. Kleiman, S. L., Geometry on Grassmannians and applications to splitting bundles and smooth- ing
cycles, Inst. Hautes E´ tudes Sci. Publ. Math., No. 36 (1969), 281–297.
9. Langer, A., Semistable sheaves in positive characteristic, Ann. of Math. (2) 159 (2004) no. 1,
251–276.
10. Laudal, O. A., A generalized trisecant lemma, Algebraic Geometry (Proc. Sympos. Univ. Tromsø,
Tromsø, 1977), Lecture Notes in Math., no. 687, Springer-Verlag, Berlin, 1978, pp. 112-–149.
11. Maggioni, R. and Ragusa, A., The Hilbert function of generic plane sections of curves of P3,
Inv. Math., 91 (1988), 253—258.
12. Maggioni, R. and Ragusa, A., Construction of smooth curves of P3 with assigned Hilbert function
and generators’ degrees, Le Matematiche, 42 (1987), no. 1-2, 195–209 (1989).
13. Maruyama, M., Boundedness of semistable sheaves of small ranks, Nagoya Math. J., 78 (1980),
65–94.
14. Mehta, V. B. and Ramanathan, A., Homogeneous bundles in characteristic p, in Algebraic
geometry - open problems, Proc. Conf., Ravello/Italy 1982, Lect. Notes Math. 997, 315–320 (1983).
15. Mezzetti, E. and Raspanti, I., A Laudal-type theorem for surfaces in P4, Commutative algebra
and algebraic geometry, I (Italian) (Turin, 1990), Rend. Sem. Mat. Univ. Politec. Torino, 48
(1990), no. 4, 529–537 (1993).
16. Mezzetti, E., The border cases of the lifting theorem for surfaces in P4, J. Reine Angew.
Math., 433 (1992), 101–111.
17. Mezzetti, E., Differential-geometric methods for the lifting problem and linear systems on
plane curves, J. Algebraic Geom., 3 (1994), no. 3, 375–398.
18. Milne, J. S., ’Etale cohomology, Princeton Mathematical Series, no. 33, Princeton University
Press, Princeton, N.J., 1980.
19. Okonek, C., Schneider, M., Spindler, H., Vector bundles on complex projective spaces, Progress
in Mathematics, 3. Birkh¨auser, Boston, Mass., 1980.
20. Roggero, M., Sulle sezioni di un fascio riflessivo di rango 2 definenti sottovariet`a integre,
Boll. Un. Mat. Ital. D (6) 4 (1985), no. 1, 57–61 (1986).
21. Roggero, M., Lifting problem for codimension two subvarieties in Pn+2: border cases, Geo-
metric and combinatorial aspects of commutative algebra (Messina, 1999), 309–326, Lecture Notes in
Pure and Appl. Math., 217, Dekker, New York, 2001.
22. Roggero, M., Generalizations of “Laudal Trescano Lemma” to codimension 2 subvarieties in
PN , Quaderni del Dipartimento di Matematica di Torino 23/2003.
23. Shepherd-Barron, N. I., Semi-stability and reduction mod p, Topology, 37 (1998), 659–664.
24. Strano, R., On the hyperplane sections of curves, Proceedings of the Geometry Conference
(Milan and Gargnano, 1987), Rend. Sem. Mat. Fis. Milano, 57 (1987), 125–134 (1989).
25. Tortora, A., On the lifting problem in codimension two, (English summary) Matematiche
(Catania), 52 (1997), no. 1, 41–51 (1998).