Research Article
BibTex RIS Cite
Year 2012, Volume: 5 Issue: 1, 163 - 170, 30.04.2012

Abstract

References

  • [1] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
  • [2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Isreal J. Math. 99 (1997), 69-108.
  • [3] Chen,B.-Y., Pseudo-Riemannian geometry, δ invariants and applications, World Scientific, 2011.
  • [4] Chen, B.-Y. and Houh, C.-S., Totally real submanifolds of a quaternion projective space, Ann. Mat. Pura Appl. 120 (1974), 185-199.
  • [5] Deng, S., An improved Chen-Ricci Inequality, Int. Electron. J. Geom. 2 (2009), no.2, 39-45.
  • [6] Ishihara, S., Quaternion Kahlerian manifolds, J. Diff. Geom.9 (1974), 483-500.
  • [7] Liu, X., On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch Math. (Brno), 38 (2002), 297-305.
  • [8] Liu, X. and Dai, W., Ricci curvature of submanifolds in a quaternion projective space, Com- mun. Korean Math. Soc.17 (2002), No.4, 625-633.
  • [9] Oh, Y. M., Lagrangian H-umbilical submanifolds in quaternion Euclidean spaces,arXiv:math/0311065v1 5 Nov 2003.
  • [10] Oprea, T., On a geometric inequality, arXiv:math.DG/0511088v1 3 Nov 2005.
  • [11] Oprea, T., Ricci curvature of Lagrangian submanifolds in complex space forms , Math. In- equal. Appl. 13(2010), no. 4, 851-858.
  • [12] Tripathi, M. M., Improved Chen-Ricci inequality for curvature-like tensors and its application, Differen. Geom. Appl. 29 (2011), no. 5, 685-698.
  • [13] Yano, K. and Kon, M., Structures on manifolds, Series in Pure Mathematics, 3. World Sci- entific Publishing Co., Singapore, 1984.

IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS

Year 2012, Volume: 5 Issue: 1, 163 - 170, 30.04.2012

Abstract


References

  • [1] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
  • [2] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Isreal J. Math. 99 (1997), 69-108.
  • [3] Chen,B.-Y., Pseudo-Riemannian geometry, δ invariants and applications, World Scientific, 2011.
  • [4] Chen, B.-Y. and Houh, C.-S., Totally real submanifolds of a quaternion projective space, Ann. Mat. Pura Appl. 120 (1974), 185-199.
  • [5] Deng, S., An improved Chen-Ricci Inequality, Int. Electron. J. Geom. 2 (2009), no.2, 39-45.
  • [6] Ishihara, S., Quaternion Kahlerian manifolds, J. Diff. Geom.9 (1974), 483-500.
  • [7] Liu, X., On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch Math. (Brno), 38 (2002), 297-305.
  • [8] Liu, X. and Dai, W., Ricci curvature of submanifolds in a quaternion projective space, Com- mun. Korean Math. Soc.17 (2002), No.4, 625-633.
  • [9] Oh, Y. M., Lagrangian H-umbilical submanifolds in quaternion Euclidean spaces,arXiv:math/0311065v1 5 Nov 2003.
  • [10] Oprea, T., On a geometric inequality, arXiv:math.DG/0511088v1 3 Nov 2005.
  • [11] Oprea, T., Ricci curvature of Lagrangian submanifolds in complex space forms , Math. In- equal. Appl. 13(2010), no. 4, 851-858.
  • [12] Tripathi, M. M., Improved Chen-Ricci inequality for curvature-like tensors and its application, Differen. Geom. Appl. 29 (2011), no. 5, 685-698.
  • [13] Yano, K. and Kon, M., Structures on manifolds, Series in Pure Mathematics, 3. World Sci- entific Publishing Co., Singapore, 1984.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Shangrong Deng This is me

Publication Date April 30, 2012
Published in Issue Year 2012 Volume: 5 Issue: 1

Cite

APA Deng, S. (2012). IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS. International Electronic Journal of Geometry, 5(1), 163-170.
AMA Deng S. IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS. Int. Electron. J. Geom. April 2012;5(1):163-170.
Chicago Deng, Shangrong. “IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS”. International Electronic Journal of Geometry 5, no. 1 (April 2012): 163-70.
EndNote Deng S (April 1, 2012) IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS. International Electronic Journal of Geometry 5 1 163–170.
IEEE S. Deng, “IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS”, Int. Electron. J. Geom., vol. 5, no. 1, pp. 163–170, 2012.
ISNAD Deng, Shangrong. “IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS”. International Electronic Journal of Geometry 5/1 (April 2012), 163-170.
JAMA Deng S. IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS. Int. Electron. J. Geom. 2012;5:163–170.
MLA Deng, Shangrong. “IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS”. International Electronic Journal of Geometry, vol. 5, no. 1, 2012, pp. 163-70.
Vancouver Deng S. IMPROVED CHEN-RICCI INEQUALITY FOR LAGRANGIAN SUBMANIFOLDS IN QUATERNION SPACE FORMS. Int. Electron. J. Geom. 2012;5(1):163-70.