Research Article
BibTex RIS Cite

An Improved Chen-Ricci Inequality

Year 2009, Volume: 2 Issue: 2, 39 - 45, 30.10.2009

Abstract


References

  • [1] Borrelli, V., Chen, B.-Y. and Morvan, J.-M., Une caractérisation gómètrique de la sphère de Whitney, C. R. Acad. Sci. Paris S´er. I Math. 321 (1995), 1485–1490.
  • [2] Castro, I. and Urbano, F., Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form, Tˆohoku Math. J. 45 (1993), 656–582.
  • [3] Castro, I. and Urbano, F., Twistor holomorphic Lagrangian surface in the complex projective and hyperbolic planes, Ann. Global Anal. Geom. 13 (1995), 59–67.
  • [4] Chen, B.-Y., Jacobi’s elliptic functions and Lagrangian immersions, Proc. Royal Soc. Edin- burgh, 126 (1996), 687–704.
  • [5] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Isreal J. Math. 99 (1997), 69-108.
  • [6] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
  • [7] Chen, B.-Y., Riemannian submanifolds, Handbook of Riemannian Submanifolds, (Edited by F. Dillen and L. Verstraelen), Elsevier, Holland, volume 1 (2000), 187–418.
  • [8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225–229.
  • [9] Chen, B.-Y. and Vrancken, L., Lagrangian submanifolds satisfying a basic inequality, Math. Proc. Cambridge Phil. Soc. 120 (1996), 291–307.
  • [10] Liu, Ximin, On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch Math. (Brno), 38 (2002), 297-305.
  • [11] Oprea, T., On a geometric inequality, arXiv:math.DG/0511088v1 3 Nov 2005.
  • [12] Tripathi, M. M., Chen-Ricci inequalities for submanifolds of contact metric manifolds, J. Ad. Math. Studies 1 (2008), 111–134.
  • [13] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
Year 2009, Volume: 2 Issue: 2, 39 - 45, 30.10.2009

Abstract

References

  • [1] Borrelli, V., Chen, B.-Y. and Morvan, J.-M., Une caractérisation gómètrique de la sphère de Whitney, C. R. Acad. Sci. Paris S´er. I Math. 321 (1995), 1485–1490.
  • [2] Castro, I. and Urbano, F., Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form, Tˆohoku Math. J. 45 (1993), 656–582.
  • [3] Castro, I. and Urbano, F., Twistor holomorphic Lagrangian surface in the complex projective and hyperbolic planes, Ann. Global Anal. Geom. 13 (1995), 59–67.
  • [4] Chen, B.-Y., Jacobi’s elliptic functions and Lagrangian immersions, Proc. Royal Soc. Edin- burgh, 126 (1996), 687–704.
  • [5] Chen, B.-Y., Interaction of Legendre curves and Lagrangian submanifolds, Isreal J. Math. 99 (1997), 69-108.
  • [6] Chen, B.-Y., Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
  • [7] Chen, B.-Y., Riemannian submanifolds, Handbook of Riemannian Submanifolds, (Edited by F. Dillen and L. Verstraelen), Elsevier, Holland, volume 1 (2000), 187–418.
  • [8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds, Michigan Math. J. 21 (1974), 225–229.
  • [9] Chen, B.-Y. and Vrancken, L., Lagrangian submanifolds satisfying a basic inequality, Math. Proc. Cambridge Phil. Soc. 120 (1996), 291–307.
  • [10] Liu, Ximin, On Ricci curvature of totally real submanifolds in a quaternion projective space, Arch Math. (Brno), 38 (2002), 297-305.
  • [11] Oprea, T., On a geometric inequality, arXiv:math.DG/0511088v1 3 Nov 2005.
  • [12] Tripathi, M. M., Chen-Ricci inequalities for submanifolds of contact metric manifolds, J. Ad. Math. Studies 1 (2008), 111–134.
  • [13] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.
There are 13 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Shangrong Deng This is me

Publication Date October 30, 2009
Published in Issue Year 2009 Volume: 2 Issue: 2

Cite

APA Deng, S. (2009). An Improved Chen-Ricci Inequality. International Electronic Journal of Geometry, 2(2), 39-45.
AMA Deng S. An Improved Chen-Ricci Inequality. Int. Electron. J. Geom. October 2009;2(2):39-45.
Chicago Deng, Shangrong. “An Improved Chen-Ricci Inequality”. International Electronic Journal of Geometry 2, no. 2 (October 2009): 39-45.
EndNote Deng S (October 1, 2009) An Improved Chen-Ricci Inequality. International Electronic Journal of Geometry 2 2 39–45.
IEEE S. Deng, “An Improved Chen-Ricci Inequality”, Int. Electron. J. Geom., vol. 2, no. 2, pp. 39–45, 2009.
ISNAD Deng, Shangrong. “An Improved Chen-Ricci Inequality”. International Electronic Journal of Geometry 2/2 (October 2009), 39-45.
JAMA Deng S. An Improved Chen-Ricci Inequality. Int. Electron. J. Geom. 2009;2:39–45.
MLA Deng, Shangrong. “An Improved Chen-Ricci Inequality”. International Electronic Journal of Geometry, vol. 2, no. 2, 2009, pp. 39-45.
Vancouver Deng S. An Improved Chen-Ricci Inequality. Int. Electron. J. Geom. 2009;2(2):39-45.