Research Article
PDF EndNote BibTex RIS Cite

Year 2010, Volume 3, Issue 1, 11 - 15, 30.04.2010

Abstract

References

  • [1] Martin Peternell, Tibor Steiner, A geometric idea to solve the eikonal equation, Proceedings of the 21st Spring Conference on computer graphics (Budmerice, Slovakia,2005), pp. 43-48.
  • [2] Andrew Pressely, Elementary Differential Geometry, Springer 2001.
  • [3] J. A. Sethian, Level Set Methods and Fast Marching Algorithm, Cambridge University Press, 2nd-edition, 2006.
  • [4] Lawrence. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Amer- ican Mathematical Scoiety, 1998.

A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces

Year 2010, Volume 3, Issue 1, 11 - 15, 30.04.2010

Abstract


References

  • [1] Martin Peternell, Tibor Steiner, A geometric idea to solve the eikonal equation, Proceedings of the 21st Spring Conference on computer graphics (Budmerice, Slovakia,2005), pp. 43-48.
  • [2] Andrew Pressely, Elementary Differential Geometry, Springer 2001.
  • [3] J. A. Sethian, Level Set Methods and Fast Marching Algorithm, Cambridge University Press, 2nd-edition, 2006.
  • [4] Lawrence. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, Amer- ican Mathematical Scoiety, 1998.

Details

Primary Language English
Journal Section Research Article
Authors

N.uday KİRAN This is me


M. S. SRİNATH This is me


Ramesh SHARMA>

Publication Date April 30, 2010
Published in Issue Year 2010, Volume 3, Issue 1

Cite

Bibtex @research article { iejg599473, journal = {International Electronic Journal of Geometry}, eissn = {1307-5624}, address = {}, publisher = {Kazım İLARSLAN}, year = {2010}, volume = {3}, number = {1}, pages = {11 - 15}, title = {A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces}, key = {cite}, author = {Kiran, N.uday and Srinath, M. S. and Sharma, Ramesh} }
APA Kiran, N. , Srinath, M. S. & Sharma, R. (2010). A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces . International Electronic Journal of Geometry , 3 (1) , 11-15 . Retrieved from https://dergipark.org.tr/en/pub/iejg/issue/47485/599473
MLA Kiran, N. , Srinath, M. S. , Sharma, R. "A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces" . International Electronic Journal of Geometry 3 (2010 ): 11-15 <https://dergipark.org.tr/en/pub/iejg/issue/47485/599473>
Chicago Kiran, N. , Srinath, M. S. , Sharma, R. "A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces". International Electronic Journal of Geometry 3 (2010 ): 11-15
RIS TY - JOUR T1 - A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces AU - N.udayKiran, M. S.Srinath, RameshSharma Y1 - 2010 PY - 2010 N1 - DO - T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 11 EP - 15 VL - 3 IS - 1 SN - -1307-5624 M3 - UR - Y2 - 2022 ER -
EndNote %0 International Electronic Journal of Geometry A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces %A N.uday Kiran , M. S. Srinath , Ramesh Sharma %T A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces %D 2010 %J International Electronic Journal of Geometry %P -1307-5624 %V 3 %N 1 %R %U
ISNAD Kiran, N.uday , Srinath, M. S. , Sharma, Ramesh . "A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces". International Electronic Journal of Geometry 3 / 1 (April 2010): 11-15 .
AMA Kiran N. , Srinath M. S. , Sharma R. A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces. Int. Electron. J. Geom.. 2010; 3(1): 11-15.
Vancouver Kiran N. , Srinath M. S. , Sharma R. A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces. International Electronic Journal of Geometry. 2010; 3(1): 11-15.
IEEE N. Kiran , M. S. Srinath and R. Sharma , "A Level Set Method-Based Derivation Of Differential Equation For Developable Surfaces", International Electronic Journal of Geometry, vol. 3, no. 1, pp. 11-15, Apr. 2010