Research Article
BibTex RIS Cite
Year 2010, Volume: 3 Issue: 1, 24 - 34, 30.04.2010

Abstract

References

  • [1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
  • [2] M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53–58.
  • [3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no. 6, 526–531.
  • [4] U. C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11.
  • [5] U. C. De, G. Pathak, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
  • [6] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. 21 (1924), no. 1, 211–223.
  • [7] H. A. Hayden, Subspace of a space with torsion, Proceedings of the London Mathe- matical Society II Series 34 (1932), 27-50.
  • [8] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.) 24 (1972), 293–296.
  • [9] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric con- nection, Tensor (N.S.) 23 (1972), 300–306.
  • [10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. Journ. 24(1972), 93-103.
  • [11] C. Özgür, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006), 204–209.
  • [12] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Applied Sciences Journal 2 (2007), no.1, 29-33.
  • [13] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connexions in almost contact manifolds, Tensor(N.S.) 30 (1976), no. 2, 133–139.
  • [14] L. Tamássy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 56 (1992), 663–670.
  • [15] L. Tamássy, T. Q. Binh, On weak symmetries of Einstein and Sasakian mani- folds,Tensor (N.S.) 53 (1993), no.1, 140–148.
  • [16] M. M. Tripathi, On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71.
  • [17] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  • [18] A. Yücesan, On semi-Riemannian submanifolds of a semi-Riemannian manifold with a semi-symmetric metric connection, Kuwait J. Sci. Eng. 35 (2008), no. 1A, 53–69.

Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection

Year 2010, Volume: 3 Issue: 1, 24 - 34, 30.04.2010

Abstract

 

References

  • [1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
  • [2] M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53–58.
  • [3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no. 6, 526–531.
  • [4] U. C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11.
  • [5] U. C. De, G. Pathak, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
  • [6] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. 21 (1924), no. 1, 211–223.
  • [7] H. A. Hayden, Subspace of a space with torsion, Proceedings of the London Mathe- matical Society II Series 34 (1932), 27-50.
  • [8] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.) 24 (1972), 293–296.
  • [9] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric con- nection, Tensor (N.S.) 23 (1972), 300–306.
  • [10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. Journ. 24(1972), 93-103.
  • [11] C. Özgür, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006), 204–209.
  • [12] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Applied Sciences Journal 2 (2007), no.1, 29-33.
  • [13] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connexions in almost contact manifolds, Tensor(N.S.) 30 (1976), no. 2, 133–139.
  • [14] L. Tamássy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 56 (1992), 663–670.
  • [15] L. Tamássy, T. Q. Binh, On weak symmetries of Einstein and Sasakian mani- folds,Tensor (N.S.) 53 (1993), no.1, 140–148.
  • [16] M. M. Tripathi, On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16 (1999), 67–71.
  • [17] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  • [18] A. Yücesan, On semi-Riemannian submanifolds of a semi-Riemannian manifold with a semi-symmetric metric connection, Kuwait J. Sci. Eng. 35 (2008), no. 1A, 53–69.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Sibel Sular

Publication Date April 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 1

Cite

APA Sular, S. (2010). Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. International Electronic Journal of Geometry, 3(1), 24-34.
AMA Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. April 2010;3(1):24-34.
Chicago Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry 3, no. 1 (April 2010): 24-34.
EndNote Sular S (April 1, 2010) Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. International Electronic Journal of Geometry 3 1 24–34.
IEEE S. Sular, “Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection”, Int. Electron. J. Geom., vol. 3, no. 1, pp. 24–34, 2010.
ISNAD Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry 3/1 (April 2010), 24-34.
JAMA Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. 2010;3:24–34.
MLA Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry, vol. 3, no. 1, 2010, pp. 24-34.
Vancouver Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. 2010;3(1):24-3.