[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
[2] M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect.
I a Mat. 33 (1987), no. 1, 53–58.
[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no.
6, 526–531.
[4] U. C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11.
[5] U. C. De, G. Pathak, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull.
Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
[6] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. 21 (1924), no. 1, 211–223.
[7] H. A. Hayden, Subspace of a space with torsion, Proceedings of the London Mathe- matical
Society II Series 34 (1932), 27-50.
[8] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.) 24 (1972), 293–296.
[9] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric con- nection, Tensor
(N.S.) 23 (1972), 300–306.
[10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. Journ.
24(1972), 93-103.
[11] C. Özgür, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006),
204–209.
[12] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Applied Sciences
Journal 2 (2007), no.1, 29-33.
[13] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connexions in almost contact manifolds,
Tensor(N.S.) 30 (1976), no. 2, 133–139.
[14] L. Tamássy, T. Q. Binh, On weakly symmetric and weakly projective symmetric
Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 56 (1992), 663–670.
[15] L. Tamássy, T. Q. Binh, On weak symmetries of Einstein and Sasakian mani-
folds,Tensor (N.S.) 53 (1993), no.1, 140–148.
[16] M. M. Tripathi, On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16
(1999), 67–71.
[17] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl.
15 (1970), 1579-1586.
[18] A. Yücesan, On semi-Riemannian submanifolds of a semi-Riemannian manifold with
a semi-symmetric metric connection, Kuwait J. Sci. Eng. 35 (2008), no. 1A, 53–69.
Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection
Year 2010,
Volume: 3 Issue: 1, 24 - 34, 30.04.2010
[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in
Mathematics 203, Birkhouser Boston, Inc., MA, 2002.
[2] M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect.
I a Mat. 33 (1987), no. 1, 53–58.
[3] M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no.
6, 526–531.
[4] U. C. De, N. Guha, On generalised recurrent manifolds, Proc. Math. Soc. 7 (1991), 7-11.
[5] U. C. De, G. Pathak, On a semi-symmetric metric connection in a Kenmotsu manifold, Bull.
Calcutta Math. Soc. 94 (2002), no. 4, 319–324.
[6] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. 21 (1924), no. 1, 211–223.
[7] H. A. Hayden, Subspace of a space with torsion, Proceedings of the London Mathe- matical
Society II Series 34 (1932), 27-50.
[8] T. Imai, Notes on semi-symmetric metric connections, Vol. I. Tensor (N.S.) 24 (1972), 293–296.
[9] T. Imai, Hypersurfaces of a Riemannian manifold with semi-symmetric metric con- nection, Tensor
(N.S.) 23 (1972), 300–306.
[10] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. Journ.
24(1972), 93-103.
[11] C. Özgür, On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst. 8 (2006),
204–209.
[12] C. Özgür, On generalized recurrent Kenmotsu manifolds, World Applied Sciences
Journal 2 (2007), no.1, 29-33.
[13] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connexions in almost contact manifolds,
Tensor(N.S.) 30 (1976), no. 2, 133–139.
[14] L. Tamássy, T. Q. Binh, On weakly symmetric and weakly projective symmetric
Riemannian manifolds, Colloq. Math. Soc. J. Bolyai, 56 (1992), 663–670.
[15] L. Tamássy, T. Q. Binh, On weak symmetries of Einstein and Sasakian mani-
folds,Tensor (N.S.) 53 (1993), no.1, 140–148.
[16] M. M. Tripathi, On a semi symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16
(1999), 67–71.
[17] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl.
15 (1970), 1579-1586.
[18] A. Yücesan, On semi-Riemannian submanifolds of a semi-Riemannian manifold with
a semi-symmetric metric connection, Kuwait J. Sci. Eng. 35 (2008), no. 1A, 53–69.
Sular, S. (2010). Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. International Electronic Journal of Geometry, 3(1), 24-34.
AMA
Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. April 2010;3(1):24-34.
Chicago
Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry 3, no. 1 (April 2010): 24-34.
EndNote
Sular S (April 1, 2010) Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. International Electronic Journal of Geometry 3 1 24–34.
IEEE
S. Sular, “Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection”, Int. Electron. J. Geom., vol. 3, no. 1, pp. 24–34, 2010.
ISNAD
Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry 3/1 (April 2010), 24-34.
JAMA
Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. 2010;3:24–34.
MLA
Sular, Sibel. “Some Properties of a Kenmotsu Manifold With a Semi-Symmetric Metric Connection”. International Electronic Journal of Geometry, vol. 3, no. 1, 2010, pp. 24-34.
Vancouver
Sular S. Some Properties of a Kenmotsu manifold with a semi-symmetric metric connection. Int. Electron. J. Geom. 2010;3(1):24-3.