[1] Bonnor, W. B., Curves with null normals in Minkowski space-time. A random walk in rela-
tivity and cosmology, Wiley Easten Limitid, 33-47 (1985).
[2] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying
plane?,Amer. Math. Monthly, 110, 147-152 (2003).
[3] İlarslan, K. and Nešović, E.,Timelike and null normal curves in Minkowski space E3, Indian
J. pure appl. Math. , 35(7), 881–888 (2004).
[4] İlarslan, , K. and Nešović, E., Spacelike and timelike normal curves in Minkowski space-time,
Publ. Inst. Math. Belgrade , 85(99), 111-118 (2009).
[5] İlarslan, , K. and Nešović, E., Some characterizations of osculating curves in the euclidean
spaces, Demonstratio Mathematica, XLI(4), 931-939 (2008).
[6] İlarslan, , K. and Nešović, E., The first kind and the second kind osculating curves in
Minkowski space-time, Compt. rend. Acad. bulg. Sci., 62(6), 677-686 (2009).
[7] İlarslan, , K. and Nešović, E., Some charactherizations of null, pseudo null and partially
null rectifying curves in Minkowski space-time, Taiwanese J. Math., 12(5), 1035-1044 (2008).
[8] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New
York, (1983).
[9] Walrave, J., Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Fac. of
ce, Leuven, (1995).
SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME
[1] Bonnor, W. B., Curves with null normals in Minkowski space-time. A random walk in rela-
tivity and cosmology, Wiley Easten Limitid, 33-47 (1985).
[2] Chen, B. Y., When does the position vector of a space curve always lie in its rectifying
plane?,Amer. Math. Monthly, 110, 147-152 (2003).
[3] İlarslan, K. and Nešović, E.,Timelike and null normal curves in Minkowski space E3, Indian
J. pure appl. Math. , 35(7), 881–888 (2004).
[4] İlarslan, , K. and Nešović, E., Spacelike and timelike normal curves in Minkowski space-time,
Publ. Inst. Math. Belgrade , 85(99), 111-118 (2009).
[5] İlarslan, , K. and Nešović, E., Some characterizations of osculating curves in the euclidean
spaces, Demonstratio Mathematica, XLI(4), 931-939 (2008).
[6] İlarslan, , K. and Nešović, E., The first kind and the second kind osculating curves in
Minkowski space-time, Compt. rend. Acad. bulg. Sci., 62(6), 677-686 (2009).
[7] İlarslan, , K. and Nešović, E., Some charactherizations of null, pseudo null and partially
null rectifying curves in Minkowski space-time, Taiwanese J. Math., 12(5), 1035-1044 (2008).
[8] O’Neill, B., Semi-Riemannian geometry with applications to relativity, Academic Press, New
York, (1983).
[9] Walrave, J., Curves and surfaces in Minkowski space, Doctoral thesis, K. U. Leuven, Fac. of
ce, Leuven, (1995).
İlarslan, K., & Nešović, E. (2011). SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME. International Electronic Journal of Geometry, 4(2), 1-12.
AMA
İlarslan K, Nešović E. SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME. Int. Electron. J. Geom. October 2011;4(2):1-12.
Chicago
İlarslan, Kazım, and Emilija Nešović. “SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME”. International Electronic Journal of Geometry 4, no. 2 (October 2011): 1-12.
EndNote
İlarslan K, Nešović E (October 1, 2011) SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME. International Electronic Journal of Geometry 4 2 1–12.
IEEE
K. İlarslan and E. Nešović, “SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME”, Int. Electron. J. Geom., vol. 4, no. 2, pp. 1–12, 2011.
ISNAD
İlarslan, Kazım - Nešović, Emilija. “SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME”. International Electronic Journal of Geometry 4/2 (October2011), 1-12.
JAMA
İlarslan K, Nešović E. SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME. Int. Electron. J. Geom. 2011;4:1–12.
MLA
İlarslan, Kazım and Emilija Nešović. “SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME”. International Electronic Journal of Geometry, vol. 4, no. 2, 2011, pp. 1-12.
Vancouver
İlarslan K, Nešović E. SOME CHARACTERIZATIONS OF PSEUDO AND PARTIALLY NULL OSCULATING CURVES IN MINKOWSKI SPACE-TIME. Int. Electron. J. Geom. 2011;4(2):1-12.