[1] Z. Akça, R. Kaya., On the Subplanes of the Cartesian Group Plane of order 25, Türk
Matematik Derne˘gi X. Ulusal Matematik Sempozyumu, 1-5 Eylül (1997) 1-7.
[2] Z. Akça, İ. Günaltılı & O¨ . Gu¨ney., On the Fano Subplanes of the Left Semifield Plane of
Order 9, Hacettepe Journal of Mathematics and Statistics Vol. 35 (1), (2006), 55-61.
[3] A. Akpınar., On some projective planes of finite order, G.U. Journal of Science 18 (2) (2005)
315-325.
[4] M. Alp, C. D. Wensley., XMOD: Crossed Modules and Cat1-groups in GAP, GAP programı ortak
paketi, Bölüm 73 (1997) 1357-1422.
[5] S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. 54 581-593,
(1996).
[6] A. Bayar, S. Ekmekçi & Z. Ak¸ca., A note on fibered projective plane geometry, Information
Science, 178 (2008) 1257-1262.
[7] S. Çiftçi R. Kaya., On the Fano Subplanes in the Translation Plane of order 9, Doğa-Tr. J.
of Mathematics 14 (1990), 1-7.
[8] R.N. Daskalov and M.E.J. Contreras., New (k; r)−arcs in the projective plane of order thir-
teen, J. Geo. 80 (2004) 10-22.
[9] Jr. M. Hall., Theory of Groups, The Macmillan Company, New York (1959).
[10] J.W.P. Hirschfeld., Projective Geometries over Finite Fields, second edition, Oxford Univer-
sity Press. Oxford, (1998).
[11] J.W.P. Hirschfeld and L. Storme., The packing problem in statistics, coding theory and fi-
nite projective spaces: update 2001, in: Finite Geometries, Proceedings of the Fourth Isle of
Thorns Conference A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, Eds., Developments
in Mathematics, Kluwer Academic Publishers, Boston, (2000) 201-246.
[12] D.R. Hughes- F.C. Piper, Projective Planes, Springer – Verlag, New York Inc, (1973) 196-201.
[13] C.W.H. Lam-G. Kolesova & L.A. Thiel., Computer Search for Finite Projective Planes of Order 9,
Discrete Mathematics, 92 (1991) 187-195.
[14] S. Marcugini, A. Milani and F. Pambianco., Classification of the (n, 3)−arcs in P G(2, 7), J.
Geom. 80 (2004) 179-184.
[15] A. Odabas., Crossed Modules of Algebras with GAP, Ph.D. Thesis, Osmangazi University (2009).
[1] Z. Akça, R. Kaya., On the Subplanes of the Cartesian Group Plane of order 25, Türk
Matematik Derne˘gi X. Ulusal Matematik Sempozyumu, 1-5 Eylül (1997) 1-7.
[2] Z. Akça, İ. Günaltılı & O¨ . Gu¨ney., On the Fano Subplanes of the Left Semifield Plane of
Order 9, Hacettepe Journal of Mathematics and Statistics Vol. 35 (1), (2006), 55-61.
[3] A. Akpınar., On some projective planes of finite order, G.U. Journal of Science 18 (2) (2005)
315-325.
[4] M. Alp, C. D. Wensley., XMOD: Crossed Modules and Cat1-groups in GAP, GAP programı ortak
paketi, Bölüm 73 (1997) 1357-1422.
[5] S. Ball, Multiple blocking sets and arcs in finite planes, J. London Math. Soc. 54 581-593,
(1996).
[6] A. Bayar, S. Ekmekçi & Z. Ak¸ca., A note on fibered projective plane geometry, Information
Science, 178 (2008) 1257-1262.
[7] S. Çiftçi R. Kaya., On the Fano Subplanes in the Translation Plane of order 9, Doğa-Tr. J.
of Mathematics 14 (1990), 1-7.
[8] R.N. Daskalov and M.E.J. Contreras., New (k; r)−arcs in the projective plane of order thir-
teen, J. Geo. 80 (2004) 10-22.
[9] Jr. M. Hall., Theory of Groups, The Macmillan Company, New York (1959).
[10] J.W.P. Hirschfeld., Projective Geometries over Finite Fields, second edition, Oxford Univer-
sity Press. Oxford, (1998).
[11] J.W.P. Hirschfeld and L. Storme., The packing problem in statistics, coding theory and fi-
nite projective spaces: update 2001, in: Finite Geometries, Proceedings of the Fourth Isle of
Thorns Conference A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas, Eds., Developments
in Mathematics, Kluwer Academic Publishers, Boston, (2000) 201-246.
[12] D.R. Hughes- F.C. Piper, Projective Planes, Springer – Verlag, New York Inc, (1973) 196-201.
[13] C.W.H. Lam-G. Kolesova & L.A. Thiel., Computer Search for Finite Projective Planes of Order 9,
Discrete Mathematics, 92 (1991) 187-195.
[14] S. Marcugini, A. Milani and F. Pambianco., Classification of the (n, 3)−arcs in P G(2, 7), J.
Geom. 80 (2004) 179-184.
[15] A. Odabas., Crossed Modules of Algebras with GAP, Ph.D. Thesis, Osmangazi University (2009).
Akça, Z. (2011). A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9. International Electronic Journal of Geometry, 4(2), 13-20.
AMA
Akça Z. A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9. Int. Electron. J. Geom. October 2011;4(2):13-20.
Chicago
Akça, Ziya. “A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9”. International Electronic Journal of Geometry 4, no. 2 (October 2011): 13-20.
EndNote
Akça Z (October 1, 2011) A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9. International Electronic Journal of Geometry 4 2 13–20.
IEEE
Z. Akça, “A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9”, Int. Electron. J. Geom., vol. 4, no. 2, pp. 13–20, 2011.
ISNAD
Akça, Ziya. “A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9”. International Electronic Journal of Geometry 4/2 (October 2011), 13-20.
JAMA
Akça Z. A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9. Int. Electron. J. Geom. 2011;4:13–20.
MLA
Akça, Ziya. “A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9”. International Electronic Journal of Geometry, vol. 4, no. 2, 2011, pp. 13-20.
Vancouver
Akça Z. A NUMERICAL COMPUTATION OF (K,3)-ARCS IN THE LEFT SEMIFIELD PLANE OF ORDER 9. Int. Electron. J. Geom. 2011;4(2):13-20.