[1] Albrecht, G., A note on Farin points for rational triangular Bézier patches,
Comput. Aided Geom. Design 12, 507–512 (1995).
[2] Albrecht, G., A geometrical design handle for rational triangular Bézier patches, in The
Mathematics of Surfaces VII (T. Goodman, R. Martin, eds.), Information Geometers Ltd., Winchester
UK, 161–171 (1997).
[3] Albrecht, G., Determination and classification of triangular quadric patches,
Comput. Aided Geom. Design 15, 675–697 (1998).
[4] Albrecht, G.,A Practical Classification Method for Rational Quadratic Bézier Triangles with
Respect to Quadrics, in Mathematical Methods for Curves and Surfaces II, (M. Dæhlen, T. Lyche, L.
L. Schumaker, eds.), VanderbiltUniv. Press, Nashville TN, 1–8 (1998).
[5] Albrecht, G., Rational Triangular B´ezier Surfaces — Theory and Applications, Shaker Verlag
(1999).
[6] Albrecht, G., An Algorithm for Parametric Quadric Patch Construction,
Computing, 72, 1–12, (2004).
[7] Boehm, W. and Hansford, D., Bézier Patches on Quadrics, in NURBS for Curve and Surface Design
(G. Farin, ed.) SIAM, Philadelphia, 1–14, (1991).
[8] Boehm, W. and Hansford, D., Parametric representation of quadric surfaces, in Math. Modelling
and Num. Analysis 26, No. 1, 191–200 (1992).
[9] Coffman, A., Schwartz, A.J. and Stanton, Ch., The algebra and geometry of Steiner and other
quadratically parametrizable surfaces, Comput. Aided Geom. Design 13, 257–286 (1996).
[10] Degen, W.L.F., The types of triangular Bézier surfaces, in The Mathematics of Surfaces VI (G.
Mullineux, ed.), The IMA Conference Series No. 58, Clarendon Press Oxford, 153–170 (1996).
[11] Farin, G., Curves and Surfaces for Computer Aided Geometric Design,
Academic Press Inc., Boston (1990).
[12] Gregory, J., N –sided surface patches, in The Mathematics of Surfaces, (J. Gregory, ed.),
Clarendon Press, Oxford, 217–232 (1986).
[13] Hagen, H., Nielson, G. and Nakajima, Y., Surface design using triangular patches, Comput.
Aided Geom. Design 13, 895–904 (1996).
[14] Joe, B. and Wang, W.P., Reparametrization of rational triangular Bézier surfaces, Comput.
Aided Geom. Design 11, No. 4, 345–361 (1994).
[15] Karciauskas, K., Quadratic Triangular Bézier Patches on Quadrics, Preprint (1997).
[16] Kmetová, M., Rational quadratic B´ezier triangles on quadrics, Acta Mathematica 2, Faculty of
Natural Sciences, University of Education, Nitra, Slovakia, 97–104 (1995).
[17] Lü, W., Rational parametrization of quadrics and their offsets, Computing,
57(2), 135–147 (1996).
[18] Niebuhr, J., Eigenschaften der Darstellung insbesondere degenerierter Quadriken mittels
Dreiecks–B´ezier–Fl¨achen, Diss. Universit¨at Braunschweig (1992).
[19] Pascal, E.,Repertorium der höheren Mathematik, 2. Band (Geometrie), Teubner, Stuttgart
(1910/1922).
[20] Sanchez-Reyes, J. and Paluszny, M., Weighted radial displacement: A geometric look at Bézier
conics and quadrics, Comput. Aided Geom. Design , 17(3), 267–289 (2000).
[21] Sederberg, T. W. and Anderson, D. C., Steiner Surface Patches, IEEE Computer Graphics and
Applications, 23–36 (May 1985).
[22] Theisel, H., Using Farin points for rational Bézier surfaces, Comput. Aided Geom. Design 16,
817–835 (1999).
[23] Vaisman, I., Analytical Geometry, Series on University Mathematics Volume 8, World Scientific
(1997).
[24] Varady, T., Survey and new results in n–sided patch generation, in The Mathematics of Surfaces
II, (R. Martin, ed.), Oxford Univ. Press, Oxford, 203–235 (1987).
GEOMETRIC INVARIANTS OF PARAMETRIC TRIANGULAR QUADRIC PATCHES
Year 2011,
Volume: 4 Issue: 2, 63 - 84, 30.10.2011
[1] Albrecht, G., A note on Farin points for rational triangular Bézier patches,
Comput. Aided Geom. Design 12, 507–512 (1995).
[2] Albrecht, G., A geometrical design handle for rational triangular Bézier patches, in The
Mathematics of Surfaces VII (T. Goodman, R. Martin, eds.), Information Geometers Ltd., Winchester
UK, 161–171 (1997).
[3] Albrecht, G., Determination and classification of triangular quadric patches,
Comput. Aided Geom. Design 15, 675–697 (1998).
[4] Albrecht, G.,A Practical Classification Method for Rational Quadratic Bézier Triangles with
Respect to Quadrics, in Mathematical Methods for Curves and Surfaces II, (M. Dæhlen, T. Lyche, L.
L. Schumaker, eds.), VanderbiltUniv. Press, Nashville TN, 1–8 (1998).
[5] Albrecht, G., Rational Triangular B´ezier Surfaces — Theory and Applications, Shaker Verlag
(1999).
[6] Albrecht, G., An Algorithm for Parametric Quadric Patch Construction,
Computing, 72, 1–12, (2004).
[7] Boehm, W. and Hansford, D., Bézier Patches on Quadrics, in NURBS for Curve and Surface Design
(G. Farin, ed.) SIAM, Philadelphia, 1–14, (1991).
[8] Boehm, W. and Hansford, D., Parametric representation of quadric surfaces, in Math. Modelling
and Num. Analysis 26, No. 1, 191–200 (1992).
[9] Coffman, A., Schwartz, A.J. and Stanton, Ch., The algebra and geometry of Steiner and other
quadratically parametrizable surfaces, Comput. Aided Geom. Design 13, 257–286 (1996).
[10] Degen, W.L.F., The types of triangular Bézier surfaces, in The Mathematics of Surfaces VI (G.
Mullineux, ed.), The IMA Conference Series No. 58, Clarendon Press Oxford, 153–170 (1996).
[11] Farin, G., Curves and Surfaces for Computer Aided Geometric Design,
Academic Press Inc., Boston (1990).
[12] Gregory, J., N –sided surface patches, in The Mathematics of Surfaces, (J. Gregory, ed.),
Clarendon Press, Oxford, 217–232 (1986).
[13] Hagen, H., Nielson, G. and Nakajima, Y., Surface design using triangular patches, Comput.
Aided Geom. Design 13, 895–904 (1996).
[14] Joe, B. and Wang, W.P., Reparametrization of rational triangular Bézier surfaces, Comput.
Aided Geom. Design 11, No. 4, 345–361 (1994).
[15] Karciauskas, K., Quadratic Triangular Bézier Patches on Quadrics, Preprint (1997).
[16] Kmetová, M., Rational quadratic B´ezier triangles on quadrics, Acta Mathematica 2, Faculty of
Natural Sciences, University of Education, Nitra, Slovakia, 97–104 (1995).
[17] Lü, W., Rational parametrization of quadrics and their offsets, Computing,
57(2), 135–147 (1996).
[18] Niebuhr, J., Eigenschaften der Darstellung insbesondere degenerierter Quadriken mittels
Dreiecks–B´ezier–Fl¨achen, Diss. Universit¨at Braunschweig (1992).
[19] Pascal, E.,Repertorium der höheren Mathematik, 2. Band (Geometrie), Teubner, Stuttgart
(1910/1922).
[20] Sanchez-Reyes, J. and Paluszny, M., Weighted radial displacement: A geometric look at Bézier
conics and quadrics, Comput. Aided Geom. Design , 17(3), 267–289 (2000).
[21] Sederberg, T. W. and Anderson, D. C., Steiner Surface Patches, IEEE Computer Graphics and
Applications, 23–36 (May 1985).
[22] Theisel, H., Using Farin points for rational Bézier surfaces, Comput. Aided Geom. Design 16,
817–835 (1999).
[23] Vaisman, I., Analytical Geometry, Series on University Mathematics Volume 8, World Scientific
(1997).
[24] Varady, T., Survey and new results in n–sided patch generation, in The Mathematics of Surfaces
II, (R. Martin, ed.), Oxford Univ. Press, Oxford, 203–235 (1987).