[6] Chen, B.-Y., Pseudo-Riemannan geometry, δ-invariants and applications, World Scientific, 2011.
[7] Chursin, M., Schäfer, L. and Smoczyk, K., Mean curvature flow of space-like Lagrangian
submanifolds in almost para-Kähler manifolds, Calc. Var., 41(2010), no. 1–2, 111–125.
[8] Cortés, V., Mayer, C., Mohaupt, T. and Saueressig, F., Special geometry of Euclidean super-
symmetry I: Vector multiplets, J. High Energy Phys., 03(2004), 028.
[9] Cortés, V., Lawn, M.A. and Schäfer, L., Affine hyperspheres associated to special para-Kähler
manifolds, Int. J. Geom. Methods M., 3(2006), 995–1009.
[10] Cruceanu, V., Fortuny, P. and Gadea, P.M., A survey on paracomplex geometry, Rocky Mountain J.
Math., 26(1996), no. 1, 83–115.
[11] Etayo, F., Santamaría, R. and Trías, U.R., The geometry of a bi-Lagrangian manifold, Differ.
Geom. Appl., 24(2006), no. 1, 33–59.
[12] Gadea, P.M. and Montesinos Amilibia, A., The paracomplex projective spaces as symmetric
and natural spaces, Indian J. Pure Appl. Math., 23(1992), no. 4, 261–275.
[13] Gelfand, I., Retakh, V. and Shubin, M., Fedosov manifolds, Adv. Math., 136(1998), 104–140.
[14] Libermann, P., Sur le problème d’équivalence de certaines structures infinit´esimales,
Ann.Mat. Pura Appl., 36(1954), 27–120.
[16] Munkres, J.R., Elementary differential topology, Vol. 54 of Ann. of Math. Stud., Princeton
University Press, Princeton, NJ, 1966.
[17] Nomizu, K. and Sasaki, T., Affine differential geometry: geometry of affine immersions, Vol.
111 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1994.
[18] Raschewski, P.K., Riemannsche Geometrie und Tensoranalysis, Vol. 42 of Hochschulbücher
für Mathematik, Deutscher Verlag der Wissenschaften, Berlin, 1959.
[19] Shima, H., Geometry of Hessian Structures, World Scientific, Hackensack, New Jersey, 2007.
[20] Weyl, H., Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung,
G¨ottinger Nachr., 1921, 99–112.
HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS
Year 2011,
Volume: 4 Issue: 2, 85 - 113, 30.10.2011
[6] Chen, B.-Y., Pseudo-Riemannan geometry, δ-invariants and applications, World Scientific, 2011.
[7] Chursin, M., Schäfer, L. and Smoczyk, K., Mean curvature flow of space-like Lagrangian
submanifolds in almost para-Kähler manifolds, Calc. Var., 41(2010), no. 1–2, 111–125.
[8] Cortés, V., Mayer, C., Mohaupt, T. and Saueressig, F., Special geometry of Euclidean super-
symmetry I: Vector multiplets, J. High Energy Phys., 03(2004), 028.
[9] Cortés, V., Lawn, M.A. and Schäfer, L., Affine hyperspheres associated to special para-Kähler
manifolds, Int. J. Geom. Methods M., 3(2006), 995–1009.
[10] Cruceanu, V., Fortuny, P. and Gadea, P.M., A survey on paracomplex geometry, Rocky Mountain J.
Math., 26(1996), no. 1, 83–115.
[11] Etayo, F., Santamaría, R. and Trías, U.R., The geometry of a bi-Lagrangian manifold, Differ.
Geom. Appl., 24(2006), no. 1, 33–59.
[12] Gadea, P.M. and Montesinos Amilibia, A., The paracomplex projective spaces as symmetric
and natural spaces, Indian J. Pure Appl. Math., 23(1992), no. 4, 261–275.
[13] Gelfand, I., Retakh, V. and Shubin, M., Fedosov manifolds, Adv. Math., 136(1998), 104–140.
[14] Libermann, P., Sur le problème d’équivalence de certaines structures infinit´esimales,
Ann.Mat. Pura Appl., 36(1954), 27–120.
[16] Munkres, J.R., Elementary differential topology, Vol. 54 of Ann. of Math. Stud., Princeton
University Press, Princeton, NJ, 1966.
[17] Nomizu, K. and Sasaki, T., Affine differential geometry: geometry of affine immersions, Vol.
111 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1994.
[18] Raschewski, P.K., Riemannsche Geometrie und Tensoranalysis, Vol. 42 of Hochschulbücher
für Mathematik, Deutscher Verlag der Wissenschaften, Berlin, 1959.
[19] Shima, H., Geometry of Hessian Structures, World Scientific, Hackensack, New Jersey, 2007.
[20] Weyl, H., Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung,
G¨ottinger Nachr., 1921, 99–112.
Hildebrand, R. (2011). HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS. International Electronic Journal of Geometry, 4(2), 85-113.
AMA
Hildebrand R. HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS. Int. Electron. J. Geom. October 2011;4(2):85-113.
Chicago
Hildebrand, Roland. “HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS”. International Electronic Journal of Geometry 4, no. 2 (October 2011): 85-113.
EndNote
Hildebrand R (October 1, 2011) HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS. International Electronic Journal of Geometry 4 2 85–113.
IEEE
R. Hildebrand, “HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS”, Int. Electron. J. Geom., vol. 4, no. 2, pp. 85–113, 2011.
ISNAD
Hildebrand, Roland. “HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS”. International Electronic Journal of Geometry 4/2 (October 2011), 85-113.
JAMA
Hildebrand R. HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS. Int. Electron. J. Geom. 2011;4:85–113.
MLA
Hildebrand, Roland. “HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS”. International Electronic Journal of Geometry, vol. 4, no. 2, 2011, pp. 85-113.
Vancouver
Hildebrand R. HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS. Int. Electron. J. Geom. 2011;4(2):85-113.