Research Article
PDF EndNote BibTex RIS Cite

Year 2011, Volume 4, Issue 2, 114 - 119, 30.10.2011

Abstract

References

  • [1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
  • [2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
  • [3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252- 254.
  • [4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
  • [5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997), 57-60.
  • [6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math- ematical Journal, 4(1957), 97-98.
  • [7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 65(1958), 521.
  • [8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
  • [9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
  • [10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
  • [11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001), 99-102.
  • [12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
  • [13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education Press.Hunan, 15(1992), 80-100(in Chinese).
  • [14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi- nese).
  • [15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
  • [16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang teachers college, 22(5)(2003), 11-13(in Chinese).

A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY

Year 2011, Volume 4, Issue 2, 114 - 119, 30.10.2011

Abstract

 

References

  • [1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
  • [2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
  • [3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252- 254.
  • [4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
  • [5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997), 57-60.
  • [6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math- ematical Journal, 4(1957), 97-98.
  • [7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 65(1958), 521.
  • [8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
  • [9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
  • [10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
  • [11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001), 99-102.
  • [12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
  • [13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education Press.Hunan, 15(1992), 80-100(in Chinese).
  • [14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi- nese).
  • [15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
  • [16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang teachers college, 22(5)(2003), 11-13(in Chinese).

Details

Primary Language English
Journal Section Research Article
Authors

Jian LİU This is me

Publication Date October 30, 2011
Published in Issue Year 2011, Volume 4, Issue 2

Cite

Bibtex @research article { iejg599495, journal = {International Electronic Journal of Geometry}, eissn = {1307-5624}, address = {}, publisher = {Kazım İLARSLAN}, year = {2011}, volume = {4}, number = {2}, pages = {114 - 119}, title = {A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY}, key = {cite}, author = {Liu, Jian} }
APA Liu, J. (2011). A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY . International Electronic Journal of Geometry , 4 (2) , 114-119 . Retrieved from https://dergipark.org.tr/en/pub/iejg/issue/47488/599495
MLA Liu, J. "A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY" . International Electronic Journal of Geometry 4 (2011 ): 114-119 <https://dergipark.org.tr/en/pub/iejg/issue/47488/599495>
Chicago Liu, J. "A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY". International Electronic Journal of Geometry 4 (2011 ): 114-119
RIS TY - JOUR T1 - A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY AU - JianLiu Y1 - 2011 PY - 2011 N1 - DO - T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 114 EP - 119 VL - 4 IS - 2 SN - -1307-5624 M3 - UR - Y2 - 2022 ER -
EndNote %0 International Electronic Journal of Geometry A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY %A Jian Liu %T A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY %D 2011 %J International Electronic Journal of Geometry %P -1307-5624 %V 4 %N 2 %R %U
ISNAD Liu, Jian . "A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY". International Electronic Journal of Geometry 4 / 2 (October 2011): 114-119 .
AMA Liu J. A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. Int. Electron. J. Geom.. 2011; 4(2): 114-119.
Vancouver Liu J. A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. International Electronic Journal of Geometry. 2011; 4(2): 114-119.
IEEE J. Liu , "A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY", International Electronic Journal of Geometry, vol. 4, no. 2, pp. 114-119, Oct. 2011