[1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
[2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical
problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
[3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252-
254.
[4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
[5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997),
57-60.
[6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math-
ematical Journal, 4(1957), 97-98.
[7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly,
65(1958), 521.
[8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
[9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
[10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
[11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001),
99-102.
[12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal
University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
[13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education
Press.Hunan, 15(1992), 80-100(in Chinese).
[14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi-
nese).
[15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric
Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
[16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang
teachers college, 22(5)(2003), 11-13(in Chinese).
A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY
Year 2011,
Volume: 4 Issue: 2, 114 - 119, 30.10.2011
[1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
[2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical
problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
[3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252-
254.
[4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
[5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997),
57-60.
[6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math-
ematical Journal, 4(1957), 97-98.
[7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly,
65(1958), 521.
[8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
[9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
[10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
[11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001),
99-102.
[12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal
University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
[13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education
Press.Hunan, 15(1992), 80-100(in Chinese).
[14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi-
nese).
[15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric
Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
[16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang
teachers college, 22(5)(2003), 11-13(in Chinese).