Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 2, 114 - 119, 30.10.2011

Abstract

References

  • [1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
  • [2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
  • [3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252- 254.
  • [4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
  • [5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997), 57-60.
  • [6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math- ematical Journal, 4(1957), 97-98.
  • [7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 65(1958), 521.
  • [8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
  • [9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
  • [10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
  • [11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001), 99-102.
  • [12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
  • [13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education Press.Hunan, 15(1992), 80-100(in Chinese).
  • [14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi- nese).
  • [15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
  • [16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang teachers college, 22(5)(2003), 11-13(in Chinese).

A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY

Year 2011, Volume: 4 Issue: 2, 114 - 119, 30.10.2011

Abstract

 

References

  • [1] P.Erdös, Problem 3740, Amer.Math.Monthly, 42(1935), 396.
  • [2] L.J.Mordell, Egy geometriai, probléma megoldása(Solution of a geometrical problem), Középiskolai Matematikaiés Fizikai Lapok 11(1935), 145-146.
  • [3] L.J.Mordell and D.F.Barrow, Solution of Problem 3740, Amer.Math.Monthly, 44(1937), 252- 254.
  • [4] G.R.Veldkamp, The Erdös-Mordell Inequality, Nieuw Tijdschr.Wisk, 45(1957/1958),193-196.
  • [5] V.Komornik, A short proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 104(1997), 57-60.
  • [6] D.K.Kazarinoff, A simple proof of the Erdös-Mordell inequality for triangles, Michigan Math- ematical Journal, 4(1957), 97-98.
  • [7] L.Bankoff, An elementary proof of the Erdös-Mordell theorem, Amer.Math.Monthly, 65(1958), 521.
  • [8] A.Avez, A short proof of the Erdös and Mordell theorem, Amer.Math.Monthly, 100(1993), 60-62.
  • [9] H.Lee, Another proof of the Erdös-Mordell theorem, Forum Geom, 1(2001), 7-8.
  • [10] N.Dergiades, Signed distances and the Erdös-Mordell inequality, Forum Geom, 4(2004), 67- 68.
  • [11] C.Alsina, R.B.Nelsen, A visual proof of the Erdös-Mordell inequality, Forum Geom, 7(2001), 99-102.
  • [12] J.Liu, A sharpening of the Erdös-Mordell and its applications, Journal of Chongqing Normal University (Natural Science Edition), 22(2)(2005), 12-14(in Chinese).
  • [13] J.Liu, Several new inequalities for the triangle, Mathematics Competition, Hunan Education Press.Hunan, 15(1992), 80-100(in Chinese).
  • [14] Z.Wang, Proof of a geometric inequality, Commun. Stud. Inequal. 16(1)(2009), 66-68(in Chi- nese).
  • [15] D.S.Mitrinović J.E.Pečarić and V.Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht 1989.
  • [16] J.Liu, Applications of a corollary of the Wolstenholme inequality, Journal of luoyang teachers college, 22(5)(2003), 11-13(in Chinese).
There are 16 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Jian Liu This is me

Publication Date October 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 2

Cite

APA Liu, J. (2011). A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. International Electronic Journal of Geometry, 4(2), 114-119.
AMA Liu J. A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. Int. Electron. J. Geom. October 2011;4(2):114-119.
Chicago Liu, Jian. “A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY”. International Electronic Journal of Geometry 4, no. 2 (October 2011): 114-19.
EndNote Liu J (October 1, 2011) A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. International Electronic Journal of Geometry 4 2 114–119.
IEEE J. Liu, “A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY”, Int. Electron. J. Geom., vol. 4, no. 2, pp. 114–119, 2011.
ISNAD Liu, Jian. “A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY”. International Electronic Journal of Geometry 4/2 (October 2011), 114-119.
JAMA Liu J. A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. Int. Electron. J. Geom. 2011;4:114–119.
MLA Liu, Jian. “A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY”. International Electronic Journal of Geometry, vol. 4, no. 2, 2011, pp. 114-9.
Vancouver Liu J. A NEW PROOF OF THE ERDOS-MORDELL INEQUALITY. Int. Electron. J. Geom. 2011;4(2):114-9.