[1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203,
Birkhäuser Boston, Boston, MA, 2002.
[2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a
nullity condition, Israel J. Math. 91 (1995), 189–214.
[3] Boeckx, E., A full classification of contact (k, µ)–spaces, Illinois J. Math. 44 (2000),
212–219.
[4] Dacko, P., On almost cosymplectic manifolds with the structure vector field ξ
belonging tothe k-nullity distribution, BJGA, 5 No.2 (2000) 47–60.
[5] Dacko, P. and Olszak, Z., On almost cosymplectic (k, µ, ν)-spaces, in: PDEs, Submanifolds and
Affine Differential Geometry, Banach Center Publications, Vol 69, pp. 211–220, Institute of
Mathematics, Polish Academy of Sciences, Warszawa, 2005.
[6] Dacko, P. and Olszak, Z., On almost cosymplectic (−1, µ, 0)-space, Centr. Eur. J. Math. 3
No. 2 (2005), 318–330.
[7] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and local symmetry, Bull. Belg.
Math. Soc. Simon Stevin 14 (2007), 343–354.
[8] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and nullity distributions, J. Geom.
93 (2009), 46–61.
[9] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds with a condition of η-parallelism,
Differential Geom. Appl. 27 (2009), 671–679.
[10] Falcitelli, M. and Pastore, A. M., Almost Kenmotsu f -manifolds, Balkan J. Geom. Appl. 12
(2007), no. 1, 32–43.
[11] Gouli-Andreou, F. and Xenos, P. J., A class of contact metric 3–manifolds with ξ ∈ N (k, µ)
and k, µ functions, Algebras Groups Geom. 17 (2000), 401–407.
[12] Gray, A., Spaces of constancy of curvature operators, Proc. Amer. Math. Soc. 17 (1966),
897–902.
[13] Janssens, D. and Vanhecke, L., Almost contact structures and curvatures tensors, Kodai Math.
J. 4 (1981), no. 1, 1–27.
[14] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tˆohoku Math. J. 24 (1972),
93–103.
[15] Kim, T. W. and Pak, H. K., Canonical foliations of certain classes of almost contact metric
structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841–846.
[16] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. I, II, Interscience
Publishers, New York, 1963, 1969.
[17] Koufogiorgos, T. and Tsichlias, C., On the existence of a new class of contact metric mani-
folds, Canad. Math. Bull. Vol. 43 (2000), no. 4, 440–447.
[19] Pastore, A. M. and Saltarelli, V., Almost Kenmotsu manifolds with conformal Reeb foliation,
Bull. Belg. Math. Soc. Simon Stevin 18 (2011) (to appear).
[20] Tanno, S., Some differential equations on Riemannian manifolds, J. Math. Soc. Japan, 30
(1978), 509–531.
GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS
Year 2011,
Volume: 4 Issue: 2, 168 - 183, 30.10.2011
[1] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203,
Birkhäuser Boston, Boston, MA, 2002.
[2] Blair, D. E., Koufogiorgos, T. and Papantoniou, B. J., Contact metric manifolds satisfying a
nullity condition, Israel J. Math. 91 (1995), 189–214.
[3] Boeckx, E., A full classification of contact (k, µ)–spaces, Illinois J. Math. 44 (2000),
212–219.
[4] Dacko, P., On almost cosymplectic manifolds with the structure vector field ξ
belonging tothe k-nullity distribution, BJGA, 5 No.2 (2000) 47–60.
[5] Dacko, P. and Olszak, Z., On almost cosymplectic (k, µ, ν)-spaces, in: PDEs, Submanifolds and
Affine Differential Geometry, Banach Center Publications, Vol 69, pp. 211–220, Institute of
Mathematics, Polish Academy of Sciences, Warszawa, 2005.
[6] Dacko, P. and Olszak, Z., On almost cosymplectic (−1, µ, 0)-space, Centr. Eur. J. Math. 3
No. 2 (2005), 318–330.
[7] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and local symmetry, Bull. Belg.
Math. Soc. Simon Stevin 14 (2007), 343–354.
[8] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds and nullity distributions, J. Geom.
93 (2009), 46–61.
[9] Dileo, G. and Pastore, A. M., Almost Kenmotsu manifolds with a condition of η-parallelism,
Differential Geom. Appl. 27 (2009), 671–679.
[10] Falcitelli, M. and Pastore, A. M., Almost Kenmotsu f -manifolds, Balkan J. Geom. Appl. 12
(2007), no. 1, 32–43.
[11] Gouli-Andreou, F. and Xenos, P. J., A class of contact metric 3–manifolds with ξ ∈ N (k, µ)
and k, µ functions, Algebras Groups Geom. 17 (2000), 401–407.
[12] Gray, A., Spaces of constancy of curvature operators, Proc. Amer. Math. Soc. 17 (1966),
897–902.
[13] Janssens, D. and Vanhecke, L., Almost contact structures and curvatures tensors, Kodai Math.
J. 4 (1981), no. 1, 1–27.
[14] Kenmotsu, K., A class of almost contact Riemannian manifolds, Tˆohoku Math. J. 24 (1972),
93–103.
[15] Kim, T. W. and Pak, H. K., Canonical foliations of certain classes of almost contact metric
structures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 4, 841–846.
[16] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. I, II, Interscience
Publishers, New York, 1963, 1969.
[17] Koufogiorgos, T. and Tsichlias, C., On the existence of a new class of contact metric mani-
folds, Canad. Math. Bull. Vol. 43 (2000), no. 4, 440–447.
[19] Pastore, A. M. and Saltarelli, V., Almost Kenmotsu manifolds with conformal Reeb foliation,
Bull. Belg. Math. Soc. Simon Stevin 18 (2011) (to appear).
[20] Tanno, S., Some differential equations on Riemannian manifolds, J. Math. Soc. Japan, 30
(1978), 509–531.
Pastore, A. M., & Saltarelli, V. (2011). GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS. International Electronic Journal of Geometry, 4(2), 168-183.
AMA
Pastore AM, Saltarelli V. GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS. Int. Electron. J. Geom. October 2011;4(2):168-183.
Chicago
Pastore, Anna Maria, and Vincenzo Saltarelli. “GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS”. International Electronic Journal of Geometry 4, no. 2 (October 2011): 168-83.
EndNote
Pastore AM, Saltarelli V (October 1, 2011) GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS. International Electronic Journal of Geometry 4 2 168–183.
IEEE
A. M. Pastore and V. Saltarelli, “GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS”, Int. Electron. J. Geom., vol. 4, no. 2, pp. 168–183, 2011.
ISNAD
Pastore, Anna Maria - Saltarelli, Vincenzo. “GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS”. International Electronic Journal of Geometry 4/2 (October 2011), 168-183.
JAMA
Pastore AM, Saltarelli V. GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS. Int. Electron. J. Geom. 2011;4:168–183.
MLA
Pastore, Anna Maria and Vincenzo Saltarelli. “GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS”. International Electronic Journal of Geometry, vol. 4, no. 2, 2011, pp. 168-83.
Vancouver
Pastore AM, Saltarelli V. GENERALIZED NULLITY CONDITIONS ON ALMOST KENMOTSU MANIFOLDS. Int. Electron. J. Geom. 2011;4(2):168-83.