[1] Einstein, A., Bianchi identities in the generalized theory of gravitation, Canad. J.
Math., 2, (1950), 120-128.
[2] Einstein, A., Die Grundlagen der allgemeinen Relativita¨ts−teorie, Annale der Physic,
49, (1916), 769.
[3] Einstein, A., Relativistic theory of the non-symmetic field, Appendix II in the book: The
meaning of relativity 5th edit., Princeton, 49, 1955.
[4] Einstein, A., Generalization of the relativistic theory of gravitation, Ann. of math.,
Princeton, 46, (1945), 576-584.
[5] Eisenhart, L. P., Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA, 37
(1951), 311–315.
[6] Hall, G. S., Lonie, D. P., The principle of equivalence and projective structure in spacetimes,
Class. Quantum Grav. 24 (2007), 3617-3636.
[7] Hall, G. S., Lonie, D. P., The principle of equivalence and cosmological metrics, J.
Math. Phys. 49, 022502 (2008).
[8] Hall, G. S., Lonie, D. P., Projective equivalence of Einstein spaces in general relativity,
Class. Quantum Grav. 26 (2009) 125009.
[9] Mikeˇs, J., Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai,
46. Topics in Diff. Geom., Debrecen (Hungary), (1984), 793–813.
[10] Mikeˇs, J., Holomorphically projective mappings and their generalizations, Itogi Nauki i
Tekhniky, Ser. Probl. Geom. VINITI, 1988.
[11] Mikeˇs, J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math.
Sci. New York, (1996), 311–333.
[12] Mikeˇs, J., Kiosak, V., Vanˇzurov´a, A., Geodesic Mappings of Manifolds with Affine
Connection, Olomounc, 2008.
[13] Mikeˇs, J., Starko, G. A., K-koncircular vector fields and holomorphically projective
mappings on Ka¨hlerian spaces, Rend. del Circolo di Palermo, 46, (1997), 123–127.
[14] Minˇci´c, S. M., Ricci identities in the space of non-symmetric affine connection, Mat.
Vesnik, 10(25), (1973), 161–172.
[15] Minˇci´c, S. M., New commutation formulas in the non-symmetric affine connection space, Publ.
Inst. Math. (Beograd) (N. S), 22(36), (1977), 189–199.
[16] Minˇci´c, S. M., Independent curvature tensors and pseudotensors of spaces with non-
symmetric affine connection, Coll. Math. Soc. J´anos Bolyai 31, (1979), 45–460.
[17] Minˇci´c, S. M., Stankovi´c, M. S., Velimirovi´c, Lj. S., Generalized K¨ahlerian spaces,
Filomat, 15, (2001), 167-174.
[18] Minˇci´c, S. M., Zlatanovi´c, M. Lj., New Commutation Formulas for δ-differentation in a
Generalized Finsler Space, DGDS, Vol.12, (2010), 145-157.
[19] Otsuki, T., Tasiro, Y., On curves in K¨ahlerian spaces, Math. J. Okayama Univ. 4
No 1, (1954), 57–78.
[20] Prvanovi´c, M., Holomorphically projective transformations in a locally product Rie- mannian
spaces, Math. Balkanica, 1, (1971), 195–213.
[21] Prvanovi´c, M., Four curvature tensors of non-symmetric affine connexion (in Rus-
sian), Proceedings of the conference ”150 years of Lobachevski geometry”, Kazan’ 1976, Moscow 1997,
199–205.
[22] Prvanovi´c, M., A note on holomorphically projective transformations of the Ka¨hler
space, Tensor, N. S. Vol. 35, (1981), 99–104.
[23] Puˇsi´c, N., On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian
manifold, Zbornik radova Fil. fak. Niˇs, s. Matem., 4, (1990), 55–64.
[24] Puˇsi´c, N., Charasteristic of some hyperbolic Kahlerian space, Coll. of Sci. papers of
the Fac. of Sci. Kragujevac, 16, (1994), 97–104.
[25] Puˇsi´c, N., Holomorphically-projecive connections of a hyperbolic K¨ahlerian space, Filo- mat
(Niˇs), 9:2, (1995), 187–195.
[26] Puˇsi´c, N., On geodesic lines of metric semi-symmetric connection on Riemannian and
hyperbolic K¨ahlerian spaces, Novi Sad J. Math., 29, No 3, (1999), 291–299.
[28] Sinyukov, N. S.,Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in
Russian).
[29] Stankovi´c, M. S., Minˇci´c, S. M., Velimirovi´c, Lj. S., On equitorsion Holomorphically
projective mappings of generalized K¨ahlerian spaces, Czech. Math. Jour., 54(129), (2004),
701–715.
[30] Stankovi´c, M. S. , Zlatanovi´c Lj. M., Velimirovi´c, Lj. S., Equitorsion holomorphically
projective mappings of generalized K¨ahlerian space of the first kind, Czechoslovak Mathematical
Journal, accepted for publication.
[31] Stankovi´c, M. S. , Minˇci´c, S. M., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., On equitor-
sion geodesic mappings of general affine connection spaces, Rendiconti del Seminario Matematico
Della Universita di Padova, accepted for publication.
[32] Stankovi´c, M. S., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., Some relations in the gener-
alized K¨ahlerian spaces of the second kind, Filomat 23:2 (2009), 82–89.
[33] Yano, K., Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New
York, 1965.
[34] Yano, K., On complex conformal connections, Kodai Math. Sem. Rep. 26, (1975),
137–151.
[35] Zlatanovi´c, M. Lj., Minˇci´c, S. M., Identities for curvature tensors in generalized
Finsler space, Filomat 23:2, (2009), 34-42.
Year 2010,
Volume: 3 Issue: 2, 26 - 39, 30.10.2010
[1] Einstein, A., Bianchi identities in the generalized theory of gravitation, Canad. J.
Math., 2, (1950), 120-128.
[2] Einstein, A., Die Grundlagen der allgemeinen Relativita¨ts−teorie, Annale der Physic,
49, (1916), 769.
[3] Einstein, A., Relativistic theory of the non-symmetic field, Appendix II in the book: The
meaning of relativity 5th edit., Princeton, 49, 1955.
[4] Einstein, A., Generalization of the relativistic theory of gravitation, Ann. of math.,
Princeton, 46, (1945), 576-584.
[5] Eisenhart, L. P., Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA, 37
(1951), 311–315.
[6] Hall, G. S., Lonie, D. P., The principle of equivalence and projective structure in spacetimes,
Class. Quantum Grav. 24 (2007), 3617-3636.
[7] Hall, G. S., Lonie, D. P., The principle of equivalence and cosmological metrics, J.
Math. Phys. 49, 022502 (2008).
[8] Hall, G. S., Lonie, D. P., Projective equivalence of Einstein spaces in general relativity,
Class. Quantum Grav. 26 (2009) 125009.
[9] Mikeˇs, J., Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai,
46. Topics in Diff. Geom., Debrecen (Hungary), (1984), 793–813.
[10] Mikeˇs, J., Holomorphically projective mappings and their generalizations, Itogi Nauki i
Tekhniky, Ser. Probl. Geom. VINITI, 1988.
[11] Mikeˇs, J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math.
Sci. New York, (1996), 311–333.
[12] Mikeˇs, J., Kiosak, V., Vanˇzurov´a, A., Geodesic Mappings of Manifolds with Affine
Connection, Olomounc, 2008.
[13] Mikeˇs, J., Starko, G. A., K-koncircular vector fields and holomorphically projective
mappings on Ka¨hlerian spaces, Rend. del Circolo di Palermo, 46, (1997), 123–127.
[14] Minˇci´c, S. M., Ricci identities in the space of non-symmetric affine connection, Mat.
Vesnik, 10(25), (1973), 161–172.
[15] Minˇci´c, S. M., New commutation formulas in the non-symmetric affine connection space, Publ.
Inst. Math. (Beograd) (N. S), 22(36), (1977), 189–199.
[16] Minˇci´c, S. M., Independent curvature tensors and pseudotensors of spaces with non-
symmetric affine connection, Coll. Math. Soc. J´anos Bolyai 31, (1979), 45–460.
[17] Minˇci´c, S. M., Stankovi´c, M. S., Velimirovi´c, Lj. S., Generalized K¨ahlerian spaces,
Filomat, 15, (2001), 167-174.
[18] Minˇci´c, S. M., Zlatanovi´c, M. Lj., New Commutation Formulas for δ-differentation in a
Generalized Finsler Space, DGDS, Vol.12, (2010), 145-157.
[19] Otsuki, T., Tasiro, Y., On curves in K¨ahlerian spaces, Math. J. Okayama Univ. 4
No 1, (1954), 57–78.
[20] Prvanovi´c, M., Holomorphically projective transformations in a locally product Rie- mannian
spaces, Math. Balkanica, 1, (1971), 195–213.
[21] Prvanovi´c, M., Four curvature tensors of non-symmetric affine connexion (in Rus-
sian), Proceedings of the conference ”150 years of Lobachevski geometry”, Kazan’ 1976, Moscow 1997,
199–205.
[22] Prvanovi´c, M., A note on holomorphically projective transformations of the Ka¨hler
space, Tensor, N. S. Vol. 35, (1981), 99–104.
[23] Puˇsi´c, N., On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian
manifold, Zbornik radova Fil. fak. Niˇs, s. Matem., 4, (1990), 55–64.
[24] Puˇsi´c, N., Charasteristic of some hyperbolic Kahlerian space, Coll. of Sci. papers of
the Fac. of Sci. Kragujevac, 16, (1994), 97–104.
[25] Puˇsi´c, N., Holomorphically-projecive connections of a hyperbolic K¨ahlerian space, Filo- mat
(Niˇs), 9:2, (1995), 187–195.
[26] Puˇsi´c, N., On geodesic lines of metric semi-symmetric connection on Riemannian and
hyperbolic K¨ahlerian spaces, Novi Sad J. Math., 29, No 3, (1999), 291–299.
[28] Sinyukov, N. S.,Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in
Russian).
[29] Stankovi´c, M. S., Minˇci´c, S. M., Velimirovi´c, Lj. S., On equitorsion Holomorphically
projective mappings of generalized K¨ahlerian spaces, Czech. Math. Jour., 54(129), (2004),
701–715.
[30] Stankovi´c, M. S. , Zlatanovi´c Lj. M., Velimirovi´c, Lj. S., Equitorsion holomorphically
projective mappings of generalized K¨ahlerian space of the first kind, Czechoslovak Mathematical
Journal, accepted for publication.
[31] Stankovi´c, M. S. , Minˇci´c, S. M., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., On equitor-
sion geodesic mappings of general affine connection spaces, Rendiconti del Seminario Matematico
Della Universita di Padova, accepted for publication.
[32] Stankovi´c, M. S., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., Some relations in the gener-
alized K¨ahlerian spaces of the second kind, Filomat 23:2 (2009), 82–89.
[33] Yano, K., Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New
York, 1965.
[34] Yano, K., On complex conformal connections, Kodai Math. Sem. Rep. 26, (1975),
137–151.
[35] Zlatanovi´c, M. Lj., Minˇci´c, S. M., Identities for curvature tensors in generalized
Finsler space, Filomat 23:2, (2009), 34-42.
Stanković, M. S., Zlatanović, M. L., & Velimirović, L. S. (2010). Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. International Electronic Journal of Geometry, 3(2), 26-39.
AMA
Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. October 2010;3(2):26-39.
Chicago
Stanković, Mića S., Mlian Lj. Zlatanović, and Ljubica S. Velimirović. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry 3, no. 2 (October 2010): 26-39.
EndNote
Stanković MS, Zlatanović ML, Velimirović LS (October 1, 2010) Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. International Electronic Journal of Geometry 3 2 26–39.
IEEE
M. S. Stanković, M. L. Zlatanović, and L. S. Velimirović, “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”, Int. Electron. J. Geom., vol. 3, no. 2, pp. 26–39, 2010.
ISNAD
Stanković, Mića S. et al. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry 3/2 (October 2010), 26-39.
JAMA
Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. 2010;3:26–39.
MLA
Stanković, Mića S. et al. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry, vol. 3, no. 2, 2010, pp. 26-39.
Vancouver
Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. 2010;3(2):26-39.