Research Article
BibTex RIS Cite
Year 2010, Volume: 3 Issue: 2, 40 - 48, 30.10.2010

Abstract

References

  • [1] Adam, C., Muratori, B., Nash, C., On Non-L2 solutions to the Seiberg-Witten equations, J. Math. Phys. 41(2000) 5875.
  • [2] De˘girmenci, N. and O¨ zdemir, N., A local modification to monopole equations in 8-dimension, Applied Sciences (APPS), 7(2005), 62-71.
  • [3] De˘girmenci, N. and O¨ zdemir, N., Seiberg-Witten-like equations on 7-Manifolds, Journal of Nonlinear Mathematical Physics, 12(2005), 457 - 461.
  • [4] Freund, P. G. O., Dirac monopoles and the Seiberg-Witten monopole equations, J. Math. Phys., 36(1995), 2673-2674.
  • [5] Jost, J., Riemannian Geometry and Geometric Analysis, Springer-Verlag, 2008.
  • [6] Lawson, H. B. and Michelsohn, M-L., Spin Geometry, Princeton University Press, 1989.
  • [7] Ma, Z-Q., Hou, B-Y., Yang, F-Z., Modified Seiberg-Witten monopole equations and their exact solutions, International Journal of Theoretical Physics, 38(1999) , 877-886.
  • [8] Morgan, J. W., Seiberg-Witten equations and topology of smooth four manifolds, Princeton University Press, 1996.
  • [9] Mosna,R., Singular solutions to the Seiberg-Witten and Freund equations on flat space from an iterative method, J. Math. Phys. 47(2006).
  • [10] Naber, G. L., Dirac and Seiberg-Witten monopoles, Proc. Int. Conf. on Geometry, Integra- bility and Quantization (Bulgaria) (1999), 181-199.
  • [11] Salamon, D., Seiberg-Witten Invariants and Spin Geometry, Preprint.
  • [12] Witten, E., Monopoles and four manifolds, Math. Res. Lett. 1(1994), 769-796.

Seiberg-Witten Equations With Negative Sing

Year 2010, Volume: 3 Issue: 2, 40 - 48, 30.10.2010

Abstract


References

  • [1] Adam, C., Muratori, B., Nash, C., On Non-L2 solutions to the Seiberg-Witten equations, J. Math. Phys. 41(2000) 5875.
  • [2] De˘girmenci, N. and O¨ zdemir, N., A local modification to monopole equations in 8-dimension, Applied Sciences (APPS), 7(2005), 62-71.
  • [3] De˘girmenci, N. and O¨ zdemir, N., Seiberg-Witten-like equations on 7-Manifolds, Journal of Nonlinear Mathematical Physics, 12(2005), 457 - 461.
  • [4] Freund, P. G. O., Dirac monopoles and the Seiberg-Witten monopole equations, J. Math. Phys., 36(1995), 2673-2674.
  • [5] Jost, J., Riemannian Geometry and Geometric Analysis, Springer-Verlag, 2008.
  • [6] Lawson, H. B. and Michelsohn, M-L., Spin Geometry, Princeton University Press, 1989.
  • [7] Ma, Z-Q., Hou, B-Y., Yang, F-Z., Modified Seiberg-Witten monopole equations and their exact solutions, International Journal of Theoretical Physics, 38(1999) , 877-886.
  • [8] Morgan, J. W., Seiberg-Witten equations and topology of smooth four manifolds, Princeton University Press, 1996.
  • [9] Mosna,R., Singular solutions to the Seiberg-Witten and Freund equations on flat space from an iterative method, J. Math. Phys. 47(2006).
  • [10] Naber, G. L., Dirac and Seiberg-Witten monopoles, Proc. Int. Conf. on Geometry, Integra- bility and Quantization (Bulgaria) (1999), 181-199.
  • [11] Salamon, D., Seiberg-Witten Invariants and Spin Geometry, Preprint.
  • [12] Witten, E., Monopoles and four manifolds, Math. Res. Lett. 1(1994), 769-796.
There are 12 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nedim Değirmenci

Nilüfer Özdemir

Publication Date October 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 2

Cite

APA Değirmenci, N., & Özdemir, N. (2010). Seiberg-Witten Equations With Negative Sing. International Electronic Journal of Geometry, 3(2), 40-48.
AMA Değirmenci N, Özdemir N. Seiberg-Witten Equations With Negative Sing. Int. Electron. J. Geom. October 2010;3(2):40-48.
Chicago Değirmenci, Nedim, and Nilüfer Özdemir. “Seiberg-Witten Equations With Negative Sing”. International Electronic Journal of Geometry 3, no. 2 (October 2010): 40-48.
EndNote Değirmenci N, Özdemir N (October 1, 2010) Seiberg-Witten Equations With Negative Sing. International Electronic Journal of Geometry 3 2 40–48.
IEEE N. Değirmenci and N. Özdemir, “Seiberg-Witten Equations With Negative Sing”, Int. Electron. J. Geom., vol. 3, no. 2, pp. 40–48, 2010.
ISNAD Değirmenci, Nedim - Özdemir, Nilüfer. “Seiberg-Witten Equations With Negative Sing”. International Electronic Journal of Geometry 3/2 (October 2010), 40-48.
JAMA Değirmenci N, Özdemir N. Seiberg-Witten Equations With Negative Sing. Int. Electron. J. Geom. 2010;3:40–48.
MLA Değirmenci, Nedim and Nilüfer Özdemir. “Seiberg-Witten Equations With Negative Sing”. International Electronic Journal of Geometry, vol. 3, no. 2, 2010, pp. 40-48.
Vancouver Değirmenci N, Özdemir N. Seiberg-Witten Equations With Negative Sing. Int. Electron. J. Geom. 2010;3(2):40-8.