Research Article
BibTex RIS Cite
Year 2010, Volume: 3 Issue: 2, 112 - 117, 30.10.2010

Abstract

References

  • [1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathe- matical Sciences, Volume 6 (1998), 125-134.
  • [2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differ- ential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.
  • [3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore,(1984).
  • [4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry, (Taipei , 1988) 1-18, World Sci.Publishing, Teaneck , NJ, 1989.
  • [5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in E4 with Harmonic Mean Curvature Vector Field. Math.Nachr.172, (1995), 145-169.
  • [6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point, Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.
  • [7] T. D. Moore , Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159- 168.

Tangentially Cubic Submanifolds Of E^m

Year 2010, Volume: 3 Issue: 2, 112 - 117, 30.10.2010

Abstract


References

  • [1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathe- matical Sciences, Volume 6 (1998), 125-134.
  • [2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differ- ential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.
  • [3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore,(1984).
  • [4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry, (Taipei , 1988) 1-18, World Sci.Publishing, Teaneck , NJ, 1989.
  • [5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in E4 with Harmonic Mean Curvature Vector Field. Math.Nachr.172, (1995), 145-169.
  • [6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point, Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.
  • [7] T. D. Moore , Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159- 168.
There are 7 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Günay Öztürk

Bengü (kılıç) Bayram

Kadri Arslan

Publication Date October 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 2

Cite

APA Öztürk, G., (kılıç) Bayram, B., & Arslan, K. (2010). Tangentially Cubic Submanifolds Of E^m. International Electronic Journal of Geometry, 3(2), 112-117.
AMA Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. October 2010;3(2):112-117.
Chicago Öztürk, Günay, Bengü (kılıç) Bayram, and Kadri Arslan. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry 3, no. 2 (October 2010): 112-17.
EndNote Öztürk G, (kılıç) Bayram B, Arslan K (October 1, 2010) Tangentially Cubic Submanifolds Of E^m. International Electronic Journal of Geometry 3 2 112–117.
IEEE G. Öztürk, B. (kılıç) Bayram, and K. Arslan, “Tangentially Cubic Submanifolds Of E^m”, Int. Electron. J. Geom., vol. 3, no. 2, pp. 112–117, 2010.
ISNAD Öztürk, Günay et al. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry 3/2 (October 2010), 112-117.
JAMA Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. 2010;3:112–117.
MLA Öztürk, Günay et al. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry, vol. 3, no. 2, 2010, pp. 112-7.
Vancouver Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. 2010;3(2):112-7.