Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 15 - 25, 30.04.2011

Abstract

References

  • [1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom. (1961), 144-154.
  • [2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc. 13 (1962), 276-280.
  • [3] Capursi, M., Some remarks on the product of two almost contact manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
  • [4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat. Pura Appl. 156(1990), 15-36.
  • [5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
  • [6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164-167.
  • [7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
  • [8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • [9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
  • [10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
  • [11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1 (1978), 197-204.
  • [12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
  • [13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
  • [14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod. Math. Hungar. 52(1) (2006), 101-119.
  • [15] Udriste, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
  • [16] Watson, B., Riemannian submersions and instantons, Math. Modelling,1 (1980), 381-393.
  • [17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol. 57, Teubner, Leipzig, (1983), 324-349.
  • [18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. ech., 14 (1965), 1033-1047.

Induced Structures Of The Product Of Riemannian Manifolds

Year 2011, Volume: 4 Issue: 1, 15 - 25, 30.04.2011

Abstract



References

  • [1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom. (1961), 144-154.
  • [2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc. 13 (1962), 276-280.
  • [3] Capursi, M., Some remarks on the product of two almost contact manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
  • [4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat. Pura Appl. 156(1990), 15-36.
  • [5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
  • [6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164-167.
  • [7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
  • [8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • [9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
  • [10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
  • [11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1 (1978), 197-204.
  • [12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
  • [13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
  • [14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod. Math. Hungar. 52(1) (2006), 101-119.
  • [15] Udriste, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
  • [16] Watson, B., Riemannian submersions and instantons, Math. Modelling,1 (1980), 381-393.
  • [17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol. 57, Teubner, Leipzig, (1983), 324-349.
  • [18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. ech., 14 (1965), 1033-1047.
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

T.tshikuna Matamba This is me

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Matamba, T. (2011). Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry, 4(1), 15-25.
AMA Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. April 2011;4(1):15-25.
Chicago Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 15-25.
EndNote Matamba T (April 1, 2011) Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry 4 1 15–25.
IEEE T. Matamba, “Induced Structures Of The Product Of Riemannian Manifolds”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 15–25, 2011.
ISNAD Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4/1 (April 2011), 15-25.
JAMA Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4:15–25.
MLA Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 15-25.
Vancouver Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4(1):15-2.