Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 48 - 69, 30.04.2011

Abstract

References

  • [1] Arf, C., Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I, J. Reine Angew. Math., 183 (1941), 148–167.
  • [2] Hirschfeld, J. W. P., Quadrics over finite fields, Sympos. Math., 28 (1986), 53–87.
  • [3] Hirschfeld, J. W. P. and Thas, J. A., General Galois geometries, Oxford Mathematical Mono- graphs, The Clarendon Press, Oxford University Press, New York, 1991.
  • [4] Jacobson, N., Basic algebra I, W. H. Freeman and Company, New York, 1985.
  • [5] Lang, S., Algebra, Graduate Texts in Mathematics 211, Springer Verlag, New York, 2002.
  • [6] Marcus, M., Finite dimensional multilinear algebra. Part 1, Pure and Applied Mathematics 23, Marcel Dekker, New York, 1973.
  • [7] Scharlau, W., Quadratic and Hermitian forms, Grundlehren der Mathematischen Wis- senschaften 270, Springer-Verlag, Berlin, 1985.
  • [8] Tits, J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics 386, Springer, Berlin, 1974.
  • [9] Witt, E., Über eine Invariante quadratischer Formen mod 2, J. Reine Angew. Math., 193 (1954), 119–120.

Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd

Year 2011, Volume: 4 Issue: 1, 48 - 69, 30.04.2011

Abstract



References

  • [1] Arf, C., Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I, J. Reine Angew. Math., 183 (1941), 148–167.
  • [2] Hirschfeld, J. W. P., Quadrics over finite fields, Sympos. Math., 28 (1986), 53–87.
  • [3] Hirschfeld, J. W. P. and Thas, J. A., General Galois geometries, Oxford Mathematical Mono- graphs, The Clarendon Press, Oxford University Press, New York, 1991.
  • [4] Jacobson, N., Basic algebra I, W. H. Freeman and Company, New York, 1985.
  • [5] Lang, S., Algebra, Graduate Texts in Mathematics 211, Springer Verlag, New York, 2002.
  • [6] Marcus, M., Finite dimensional multilinear algebra. Part 1, Pure and Applied Mathematics 23, Marcel Dekker, New York, 1973.
  • [7] Scharlau, W., Quadratic and Hermitian forms, Grundlehren der Mathematischen Wis- senschaften 270, Springer-Verlag, Berlin, 1985.
  • [8] Tits, J., Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Mathematics 386, Springer, Berlin, 1974.
  • [9] Witt, E., Über eine Invariante quadratischer Formen mod 2, J. Reine Angew. Math., 193 (1954), 119–120.
There are 9 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Bart De Bruyn This is me

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Bruyn, B. D. (2011). Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd. International Electronic Journal of Geometry, 4(1), 48-69.
AMA Bruyn BD. Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd. Int. Electron. J. Geom. April 2011;4(1):48-69.
Chicago Bruyn, Bart De. “Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), N Odd”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 48-69.
EndNote Bruyn BD (April 1, 2011) Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd. International Electronic Journal of Geometry 4 1 48–69.
IEEE B. D. Bruyn, “Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 48–69, 2011.
ISNAD Bruyn, Bart De. “Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), N Odd”. International Electronic Journal of Geometry 4/1 (April 2011), 48-69.
JAMA Bruyn BD. Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd. Int. Electron. J. Geom. 2011;4:48–69.
MLA Bruyn, Bart De. “Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), N Odd”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 48-69.
Vancouver Bruyn BD. Canonical Equations For NonSingular Quadrics And Hermitian Varieties Of Witt Index At Least (n-1)/2 Of PG(n;K), n Odd. Int. Electron. J. Geom. 2011;4(1):48-69.