Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 88 - 96, 30.04.2011

Abstract

References

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Bagewadi, C.S. Prakasha, D.G. and Venkatesha., A Study of Ricci quarter-symmetric metric connection on a Riemannian manifold, Indian J. Math., 50 (2008), no. 3, 607 - 615.
  • [4] Bagewadi,C.S. Prakasha, D.G. and Venkatesha., Projective curvature tensor on a Kenmotsu manifold with respect to semi-symmetric metric connection, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau., 17 (2007), 21-32.
  • [5] Biswas, S.C. and De, U.C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series, 46 (1997), 49 - 56.
  • [6] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin, New-York, 1976.
  • [7] Boeckx, E. Buecken, P. and Vanhecke,L., ɸ−symmetric contact metric spaces, Glasgow Math. J., 41 (1999), 409 - 416.
  • [8] De, U.C. and Pathak, G., On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 4, 319-324. [9] De, U.C., On ɸ−symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(2008), no. 1, 33 - 38. [10] De, U.C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series,A1, 49 (2000), 7 - 13.
  • [11] Friedmann, A. and Schouten, J.A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211 - 223.
  • [12] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor. N.S., 29 (1975), 293 - 301.
  • [13] Hayden, H.A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27 - 50.
  • [14] Kenmotsu, K., A class os almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93 - 103.
  • [15] Mishra, R.S. and Pandey, S.N., On quarter-symmetric metric F-connections, Tensor, N.S., 34 (1980), 1 - 7.
  • [16] Mondal, Abul Kalam. and De, U.C., Some properties of quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Anal. & Appl., 1 (2009), no. 3, 99-108.
  • [17] Rastogi, S.C., On quarter-symmetric metric connection, C.R. Acad. Sci. Sci. Bulgar, 31 (1978), 811 - 814.
  • [18] Rastogi, S.C., On quarter-symmetric metric connection, Tensor, 44 (1987), no. 2, 133 - 141.
  • [19] Schouten, J.A., Ricci calculus, Springer, 1954.
  • [20] Sular, S. Ozgur, C. and De, U.C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of Mathematics, 44(2008), no. 2, 297 - 306.
  • [21] Takahashi, T., Sasakian ɸ−symmetric spaces, Tohoku Math. J. 29 (1977), 91 113.
  • [22] Tripathi, M.M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math., 16 (1999), 67 - 71.
  • [23] Tripathi, M.M., On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 93(2001), no.4, 323-330.
  • [24] Tripathi, M.M., A new connection in a Riemannian manifold, Int. Electron. J. Geom., 1(2008), no. 1, 15-24.
  • [25] Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo., 16 (1940), 195 - 200.
  • [26] Yano, K., On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579 - 1586.
  • [27] Yano, K. and Imai, T., quarter-symmetric metric connections and their curvature tensors, Tensor, N.S., 38 (1982), 13 - 18.

On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection

Year 2011, Volume: 4 Issue: 1, 88 - 96, 30.04.2011

Abstract




References

  • [1] Chen, B.-Y. and Garay, O. J., An extremal class of conformally flat submanifolds in Euclidean spaces, Acta Math. Hungar., 111(2006), no. 4, 263-303.
  • [2] Duggal, Krishan L. and Bejancu, A., Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
  • [3] Bagewadi, C.S. Prakasha, D.G. and Venkatesha., A Study of Ricci quarter-symmetric metric connection on a Riemannian manifold, Indian J. Math., 50 (2008), no. 3, 607 - 615.
  • [4] Bagewadi,C.S. Prakasha, D.G. and Venkatesha., Projective curvature tensor on a Kenmotsu manifold with respect to semi-symmetric metric connection, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau., 17 (2007), 21-32.
  • [5] Biswas, S.C. and De, U.C., Quarter-symmetric metric connection in an SP-Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series, 46 (1997), 49 - 56.
  • [6] Blair, D.E., Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin, New-York, 1976.
  • [7] Boeckx, E. Buecken, P. and Vanhecke,L., ɸ−symmetric contact metric spaces, Glasgow Math. J., 41 (1999), 409 - 416.
  • [8] De, U.C. and Pathak, G., On a semi-symmetric metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 94 (2002), no. 4, 319-324. [9] De, U.C., On ɸ−symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(2008), no. 1, 33 - 38. [10] De, U.C. and Sengupta, J., Quarter-symmetric metric connection on a Sasakian manifold, Commun. Fac. Sci. Univ. Ank. Series,A1, 49 (2000), 7 - 13.
  • [11] Friedmann, A. and Schouten, J.A., Uber die Geometrie der halbsymmetrischen Ubertragung, Math. Zeitschr., 21 (1924), 211 - 223.
  • [12] Golab, S., On semi-symmetric and quarter-symmetric linear connections, Tensor. N.S., 29 (1975), 293 - 301.
  • [13] Hayden, H.A., Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932), 27 - 50.
  • [14] Kenmotsu, K., A class os almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93 - 103.
  • [15] Mishra, R.S. and Pandey, S.N., On quarter-symmetric metric F-connections, Tensor, N.S., 34 (1980), 1 - 7.
  • [16] Mondal, Abul Kalam. and De, U.C., Some properties of quarter-symmetric metric connection on a Sasakian manifold, Bull. Math. Anal. & Appl., 1 (2009), no. 3, 99-108.
  • [17] Rastogi, S.C., On quarter-symmetric metric connection, C.R. Acad. Sci. Sci. Bulgar, 31 (1978), 811 - 814.
  • [18] Rastogi, S.C., On quarter-symmetric metric connection, Tensor, 44 (1987), no. 2, 133 - 141.
  • [19] Schouten, J.A., Ricci calculus, Springer, 1954.
  • [20] Sular, S. Ozgur, C. and De, U.C., Quarter-symmetric metric connection in a Kenmotsu manifold, SUT Journal of Mathematics, 44(2008), no. 2, 297 - 306.
  • [21] Takahashi, T., Sasakian ɸ−symmetric spaces, Tohoku Math. J. 29 (1977), 91 113.
  • [22] Tripathi, M.M., On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math., 16 (1999), 67 - 71.
  • [23] Tripathi, M.M., On a semi-symmetric non-metric connection in a Kenmotsu manifold, Bull. Calcutta Math. Soc., 93(2001), no.4, 323-330.
  • [24] Tripathi, M.M., A new connection in a Riemannian manifold, Int. Electron. J. Geom., 1(2008), no. 1, 15-24.
  • [25] Yano, K., Concircular geometry I, Concircular transformations, Proc. Imp. Acad. Tokyo., 16 (1940), 195 - 200.
  • [26] Yano, K., On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl., 15 (1970), 1579 - 1586.
  • [27] Yano, K. and Imai, T., quarter-symmetric metric connections and their curvature tensors, Tensor, N.S., 38 (1982), 13 - 18.
There are 25 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

D.g. Prakasha

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Prakasha, D. (2011). On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry, 4(1), 88-96.
AMA Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. April 2011;4(1):88-96.
Chicago Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 88-96.
EndNote Prakasha D (April 1, 2011) On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry 4 1 88–96.
IEEE D. Prakasha, “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 88–96, 2011.
ISNAD Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 4/1 (April 2011), 88-96.
JAMA Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2011;4:88–96.
MLA Prakasha, D.g. “On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 88-96.
Vancouver Prakasha D. On ɸ-Symmetric Kenmotsu Manifolds With Respect To Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2011;4(1):88-96.