Research Article
BibTex RIS Cite
Year 2011, Volume: 4 Issue: 1, 125 - 128, 30.04.2011

Abstract

References

  • [1] J. A. Thorpe, Elementary topics in Differential Geometry, Springer-Verlag, Heidelberg, 1979.

Normal Vector As An Eigenvector Of The Weingarten Matrix

Year 2011, Volume: 4 Issue: 1, 125 - 128, 30.04.2011

Abstract


References

  • [1] J. A. Thorpe, Elementary topics in Differential Geometry, Springer-Verlag, Heidelberg, 1979.
There are 1 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

N.uday Kiran This is me

Ramesh Sharma

M.s. Srinath This is me

Publication Date April 30, 2011
Published in Issue Year 2011 Volume: 4 Issue: 1

Cite

APA Kiran, N., Sharma, R., & Srinath, M. (2011). Normal Vector As An Eigenvector Of The Weingarten Matrix. International Electronic Journal of Geometry, 4(1), 125-128.
AMA Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. April 2011;4(1):125-128.
Chicago Kiran, N.uday, Ramesh Sharma, and M.s. Srinath. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry 4, no. 1 (April 2011): 125-28.
EndNote Kiran N, Sharma R, Srinath M (April 1, 2011) Normal Vector As An Eigenvector Of The Weingarten Matrix. International Electronic Journal of Geometry 4 1 125–128.
IEEE N. Kiran, R. Sharma, and M. Srinath, “Normal Vector As An Eigenvector Of The Weingarten Matrix”, Int. Electron. J. Geom., vol. 4, no. 1, pp. 125–128, 2011.
ISNAD Kiran, N.uday et al. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry 4/1 (April 2011), 125-128.
JAMA Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. 2011;4:125–128.
MLA Kiran, N.uday et al. “Normal Vector As An Eigenvector Of The Weingarten Matrix”. International Electronic Journal of Geometry, vol. 4, no. 1, 2011, pp. 125-8.
Vancouver Kiran N, Sharma R, Srinath M. Normal Vector As An Eigenvector Of The Weingarten Matrix. Int. Electron. J. Geom. 2011;4(1):125-8.