Year 2020, Volume 13 , Issue 1, Pages 87 - 93 2020-01-30

In this paper, we prove that any harmonic map from a compact orientable Riemannian manifold
without boundary (or from complete Riemannian manifold) (M, g) to Riemannian manifold (N, h)
is necessarily constant, with (N, h) admitting a torse-forming vector field satisfying some condition.
Harmonic maps, bi-harmonic maps, torse-forming vector fields
  • [1] Adati, T., Miyazawa, T.: On P-Sasakian manifolds satisfying certain conditions. Tensor, N.S. 33, 173–178 (1979).
  • [2] Deshmukh S., Falleh, R. A.: Conformal vector fields and conformal transformations on a Riemannian manifold. Balkan Journal of Geometry and Its Applications. 17(1), 9–16 (2012).
  • [3] Djaa M., Elhendi M., Ouakkas, S.: On the Biharmonic Vector Fields. Turkish Journal of Mathematics. 36, 463–474 (2012).
  • [4] Baird P., Wood J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [5] Chen, B. Y.: Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujevac J. Math. 41(1), 93-103 (2017).
  • [6] Chen, B. Y.: Classification of torqued vector fields and its applications to Ricci solitons. Kragujevac J. Math. 41(2), 239–250 (2017).
  • [7] De, U. C., De, B. K.: Some properties of a semi-symmetric metric connection on a Riemannian manifold. Istanbul Univ. Fen Fak. Mat. Der. 54, 111-117 (1995).
  • [8] Eells, J., Lemaire L.: A report on harmonic maps. Bull. London Math. Soc. 16, 1–68 (1978).
  • [9] Eells, J., Lemaire L.: Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524 (1988).
  • [10] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964).
  • [11] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tˆhoku Math. J. 24, 93–103 (1972).
  • [12] Kowolik, J.: On some Riemannian manifolds admitting torse-forming vector fields. Dem. Math. 18. 3, 885-891 (1985).
  • [13] Cherif, A. M.: Some results on harmonic and bi-harmonic maps. International Journal of Geometric Methods in Modern Physics. 14 (7), (2017).
  • [14] Schouten, J. A.: Ricci-Calculus. 2nd ed. Springer-Verlag, Berlin (1954).
  • [15] Vanderwinden, A.J.: Exemples d’applcations harmoniques. PHD Thesis. Universite Libre de Bruxelles (1992).
  • [16] Wang, Z. P., Ou, Y. L., Yang, H.C.: Biharmonic maps from tori into a 2-sphere, Chin. Ann. Math. Ser. B. 39(5), 861–878 (2018).
  • [17] Xin, Y.: Geometry of harmonic maps. Fudan University, (1996).
  • [18] Yau, S. T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28, 201–228 (1975).
  • [19] Yano, K.: Concircular geometry. I. Concircular transformations. Proc. Imp. Acad. Tokyo. 16, 195–200 (1940).
  • [20] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo. 20, 340–345 (1944).
Primary Language en
Subjects Mathematics
Journal Section Research Article
Authors

Orcid: 0000-0002-6155-0976
Author: Ahmed MOHAMMED CHERİF (Primary Author)
Institution: Mascara Université
Country: Algeria


Orcid: 0000-0002-7330-2144
Author: Mustapha DJAA
Institution: Centre Universitaire de Relizane
Country: Algeria


Dates

Publication Date : January 30, 2020

Bibtex @research article { iejg555344, journal = {International Electronic Journal of Geometry}, issn = {}, eissn = {1307-5624}, address = {}, publisher = {Kazım İLARSLAN}, year = {2020}, volume = {13}, pages = {87 - 93}, doi = {10.36890/iejg.555344}, title = {Harmonic Maps and Torse-Forming Vector Fields}, key = {cite}, author = {MOHAMMED CHERİF, Ahmed and DJAA, Mustapha} }
APA MOHAMMED CHERİF, A , DJAA, M . (2020). Harmonic Maps and Torse-Forming Vector Fields. International Electronic Journal of Geometry , 13 (1) , 87-93 . DOI: 10.36890/iejg.555344
MLA MOHAMMED CHERİF, A , DJAA, M . "Harmonic Maps and Torse-Forming Vector Fields". International Electronic Journal of Geometry 13 (2020 ): 87-93 <https://dergipark.org.tr/en/pub/iejg/issue/51297/555344>
Chicago MOHAMMED CHERİF, A , DJAA, M . "Harmonic Maps and Torse-Forming Vector Fields". International Electronic Journal of Geometry 13 (2020 ): 87-93
RIS TY - JOUR T1 - Harmonic Maps and Torse-Forming Vector Fields AU - Ahmed MOHAMMED CHERİF , Mustapha DJAA Y1 - 2020 PY - 2020 N1 - doi: 10.36890/iejg.555344 DO - 10.36890/iejg.555344 T2 - International Electronic Journal of Geometry JF - Journal JO - JOR SP - 87 EP - 93 VL - 13 IS - 1 SN - -1307-5624 M3 - doi: 10.36890/iejg.555344 UR - https://doi.org/10.36890/iejg.555344 Y2 - 2019 ER -
EndNote %0 International Electronic Journal of Geometry Harmonic Maps and Torse-Forming Vector Fields %A Ahmed MOHAMMED CHERİF , Mustapha DJAA %T Harmonic Maps and Torse-Forming Vector Fields %D 2020 %J International Electronic Journal of Geometry %P -1307-5624 %V 13 %N 1 %R doi: 10.36890/iejg.555344 %U 10.36890/iejg.555344
ISNAD MOHAMMED CHERİF, Ahmed , DJAA, Mustapha . "Harmonic Maps and Torse-Forming Vector Fields". International Electronic Journal of Geometry 13 / 1 (January 2020): 87-93 . https://doi.org/10.36890/iejg.555344
AMA MOHAMMED CHERİF A , DJAA M . Harmonic Maps and Torse-Forming Vector Fields. Int. Electron. J. Geom.. 2020; 13(1): 87-93.
Vancouver MOHAMMED CHERİF A , DJAA M . Harmonic Maps and Torse-Forming Vector Fields. International Electronic Journal of Geometry. 2020; 13(1): 93-87.