Research Article
BibTex RIS Cite
Year 2020, Volume: 13 Issue: 1, 50 - 60, 30.01.2020
https://doi.org/10.36890/iejg.566914

Abstract

References

  • [1] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41 (1), 71-92 (2005).
  • [2] Abbassi, M. T. K., Sarih, M.: On Riemannian $g$-natural metrics of the form $ag^s+bg^h+cg^v$ on the tangent bundle of a Riemannian manifold $(M,g)$. Mediterr. J. Math. 2 (1), 19-43 (2005).
  • [3] Dan’shin, A.: Infinitesimal projective transformations in the tangent bundle of general space of path. Izv. Vyssh. Uchebn. Zaved. Mat. 41 (9), 8-12 (1997).
  • [4] Gezer, A., Bilen, L.: Projective vector fields on the tangent bundle with a class of Riemannian metrics. C. R. Acad. Bulgare Sci. 71 (5), 587-596 (2018).
  • [5] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on contact Riemannian manifolds. J. Hokkaido Univ. Educ. Nat. Sci. 51 (1), 1-7 (2000).
  • [6] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with the horizontal lift connection. J. Hokkaido Univ. Educ. Nat. Sci. 52 (1), 1-5 (2001).
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 7 (13), 489-503 (2002).
  • [8] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles. In: M. Anastasiei, P.L. Antonelli (editors). Finsler and Lagrange Geometries. New York, USA: Springer Science+Business Media, Springer Netherlands. 91-98 (2003).
  • [9] Kobayashi, S.: A theorem on the affine transformation group of a Riemannian manifold. Nagoya Math. J. 9, 39-41 (1955).
  • [10] Nagano, T.: The projective transformation on a space with parallel Ricci tensor. Kodai Math. J. 11 (3), 131-138 (1959).
  • [11] Okumura, M.: On infinitesimal conformal and projective transformation of normal contact spaces. Tohoku Math. J. 14 (4), 389-412 (1962).
  • [12] Yamauchi, K.: On Riemannian manifolds admitting infinitesimal projective transformations. Hokkaido Math. J. 16 (2), 115-125 (1987).
  • [13] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 19, 49-55 (1998).
  • [14] Yamauchi, K.: On infinitesimal projective transformations of tangent bundle with the metric II+III. Ann. Rep. Asahikawa Med. Coll. 20, 67-72 (1999).
  • [15] Yamauchi, K.: On infinitesimal projective transformations of tangent bundles over Riemannian manifolds. Mathematica Japonica 49 (3), 433-440 (1999).
  • [16] Yano, K.: The Theory of Lie Derivatives and Its Applications. Franklin Classics Trade Press (2018).
  • [17] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: differential geometry. Marcel Dekker Inc., New York (1973).
  • [18] Yano, K., Kobayashi, S.: Prolongation of tensor fields and connections to tangent bundles I, II, III. J. Math. Soc. Japan 18 (2), 194-210 (1966), 18 (3), 236-246 (1966), 19 (4), 486-488 (1967).

Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics

Year 2020, Volume: 13 Issue: 1, 50 - 60, 30.01.2020
https://doi.org/10.36890/iejg.566914

Abstract

Let ‎$‎ (M,g) $ be a Riemannian manifold and ‎$‎ TM $ be its tangent bundle. ‎In the present paper‎, ‎we study infinitesimal projective transformations on $ TM $ with respect to the Levi-Civita connection of a class of (pseudo-)Riemannian metrics ‎$ ‎‎\tilde{g}‎ $ which is a generalization of the three classical lifts of the metric ‎$‎g$. We characterized this type of transformations and then ‎we prove that if $ (TM,‎\tilde{g}‎) $ admits a non-affine infinitesimal projective transformation‎, ‎then $ M $ and $ TM‎‎ $ are locally flat.

References

  • [1] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds. Arch. Math. (Brno). 41 (1), 71-92 (2005).
  • [2] Abbassi, M. T. K., Sarih, M.: On Riemannian $g$-natural metrics of the form $ag^s+bg^h+cg^v$ on the tangent bundle of a Riemannian manifold $(M,g)$. Mediterr. J. Math. 2 (1), 19-43 (2005).
  • [3] Dan’shin, A.: Infinitesimal projective transformations in the tangent bundle of general space of path. Izv. Vyssh. Uchebn. Zaved. Mat. 41 (9), 8-12 (1997).
  • [4] Gezer, A., Bilen, L.: Projective vector fields on the tangent bundle with a class of Riemannian metrics. C. R. Acad. Bulgare Sci. 71 (5), 587-596 (2018).
  • [5] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on contact Riemannian manifolds. J. Hokkaido Univ. Educ. Nat. Sci. 51 (1), 1-7 (2000).
  • [6] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with the horizontal lift connection. J. Hokkaido Univ. Educ. Nat. Sci. 52 (1), 1-5 (2001).
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 7 (13), 489-503 (2002).
  • [8] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles. In: M. Anastasiei, P.L. Antonelli (editors). Finsler and Lagrange Geometries. New York, USA: Springer Science+Business Media, Springer Netherlands. 91-98 (2003).
  • [9] Kobayashi, S.: A theorem on the affine transformation group of a Riemannian manifold. Nagoya Math. J. 9, 39-41 (1955).
  • [10] Nagano, T.: The projective transformation on a space with parallel Ricci tensor. Kodai Math. J. 11 (3), 131-138 (1959).
  • [11] Okumura, M.: On infinitesimal conformal and projective transformation of normal contact spaces. Tohoku Math. J. 14 (4), 389-412 (1962).
  • [12] Yamauchi, K.: On Riemannian manifolds admitting infinitesimal projective transformations. Hokkaido Math. J. 16 (2), 115-125 (1987).
  • [13] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 19, 49-55 (1998).
  • [14] Yamauchi, K.: On infinitesimal projective transformations of tangent bundle with the metric II+III. Ann. Rep. Asahikawa Med. Coll. 20, 67-72 (1999).
  • [15] Yamauchi, K.: On infinitesimal projective transformations of tangent bundles over Riemannian manifolds. Mathematica Japonica 49 (3), 433-440 (1999).
  • [16] Yano, K.: The Theory of Lie Derivatives and Its Applications. Franklin Classics Trade Press (2018).
  • [17] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: differential geometry. Marcel Dekker Inc., New York (1973).
  • [18] Yano, K., Kobayashi, S.: Prolongation of tensor fields and connections to tangent bundles I, II, III. J. Math. Soc. Japan 18 (2), 194-210 (1966), 18 (3), 236-246 (1966), 19 (4), 486-488 (1967).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Mosayeb Zohrehvand 0000-0002-3876-4060

Publication Date January 30, 2020
Acceptance Date December 22, 2019
Published in Issue Year 2020 Volume: 13 Issue: 1

Cite

APA Zohrehvand, M. (2020). Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics. International Electronic Journal of Geometry, 13(1), 50-60. https://doi.org/10.36890/iejg.566914
AMA Zohrehvand M. Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics. Int. Electron. J. Geom. January 2020;13(1):50-60. doi:10.36890/iejg.566914
Chicago Zohrehvand, Mosayeb. “Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold With a Class of Lift Metrics”. International Electronic Journal of Geometry 13, no. 1 (January 2020): 50-60. https://doi.org/10.36890/iejg.566914.
EndNote Zohrehvand M (January 1, 2020) Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics. International Electronic Journal of Geometry 13 1 50–60.
IEEE M. Zohrehvand, “Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics”, Int. Electron. J. Geom., vol. 13, no. 1, pp. 50–60, 2020, doi: 10.36890/iejg.566914.
ISNAD Zohrehvand, Mosayeb. “Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold With a Class of Lift Metrics”. International Electronic Journal of Geometry 13/1 (January 2020), 50-60. https://doi.org/10.36890/iejg.566914.
JAMA Zohrehvand M. Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics. Int. Electron. J. Geom. 2020;13:50–60.
MLA Zohrehvand, Mosayeb. “Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold With a Class of Lift Metrics”. International Electronic Journal of Geometry, vol. 13, no. 1, 2020, pp. 50-60, doi:10.36890/iejg.566914.
Vancouver Zohrehvand M. Infinitesimal Projective Transformations on the Tangent Bundle of a Riemannian Manifold with a Class of Lift Metrics. Int. Electron. J. Geom. 2020;13(1):50-6.