Research Article
BibTex RIS Cite

Symmetric Masking Function of Segments

Year 2020, Volume: 13 Issue: 2, 45 - 51, 15.10.2020
https://doi.org/10.36890/iejg.742248

Abstract

We show that the masking function of two segments on a surrounding circle C is symmetric to a straight line sigma passing through the centre of C if and only if the set of the segments is also symmetric to sigma.dcasvafsvfvaoıhafofnvofaso pafonvpıafv982bvpkfqvbkapsfbvkjabf fkasfjbvlkfpvnbapbıpbvf8 fsjvbapfkvbapıhbvpıqbfjlbsfvşfuful şkjnbqfjkvbqşıbpqbfkvjbşqkefbvş şşqffekjbvpkwebfvpejwfbvpewıbfıvbewqhnbvşkjfkfqlvkqfbvohhqf vuhqbefvbqfvlbfsjhvbf  lqbvıqprbfvıqrw898328ru2194r9183hvpıqfvplqfıjbvqpefv vfkqfevbqefkvbıqef ıoqefbvpıqefvbqvklfebvıpwebvfıbweıp

References

  • [1] Kincses, J. and Kurusa, Á.: : Can you recognise the shape of a figure by its shadows?, Beiträge zur Alg. und Geom., 36, 25-35 (1995).
  • [2] Kurusa, Á.:, : Visual distinguishability of segments, Int. Electron. J. Geom., 6, 56-67 (2013).
  • [3] Kurusa, Á.:, : Visual distinguishability of polygons, Beiträge zur Alg. und Geom., 54 , 659-667 (2013), https://doi.org/10.1007/s13366-012-0121-7
  • [4] Kurusa, Á.:, : You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59, 113-125 (1996); https://doi.org/10.1007/BF00155723
  • [5] Kurusa, Á.:, : Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82, 663–694 (2016); https://doi.org/10.14232/actasm-015-299-1
  • [6] Lukács, P.:, : Szakaszok takarási száma, Polygon, xxiv, 29-42 (in Hungarian) (2017).
Year 2020, Volume: 13 Issue: 2, 45 - 51, 15.10.2020
https://doi.org/10.36890/iejg.742248

Abstract

References

  • [1] Kincses, J. and Kurusa, Á.: : Can you recognise the shape of a figure by its shadows?, Beiträge zur Alg. und Geom., 36, 25-35 (1995).
  • [2] Kurusa, Á.:, : Visual distinguishability of segments, Int. Electron. J. Geom., 6, 56-67 (2013).
  • [3] Kurusa, Á.:, : Visual distinguishability of polygons, Beiträge zur Alg. und Geom., 54 , 659-667 (2013), https://doi.org/10.1007/s13366-012-0121-7
  • [4] Kurusa, Á.:, : You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59, 113-125 (1996); https://doi.org/10.1007/BF00155723
  • [5] Kurusa, Á.:, : Can you see the bubbles in a foam?, Acta Sci. Math. (Szeged) 82, 663–694 (2016); https://doi.org/10.14232/actasm-015-299-1
  • [6] Lukács, P.:, : Szakaszok takarási száma, Polygon, xxiv, 29-42 (in Hungarian) (2017).
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Péter Lukács 0000-0001-5790-9715

Publication Date October 15, 2020
Acceptance Date May 24, 2020
Published in Issue Year 2020 Volume: 13 Issue: 2

Cite

APA Lukács, P. (2020). Symmetric Masking Function of Segments. International Electronic Journal of Geometry, 13(2), 45-51. https://doi.org/10.36890/iejg.742248
AMA Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. October 2020;13(2):45-51. doi:10.36890/iejg.742248
Chicago Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry 13, no. 2 (October 2020): 45-51. https://doi.org/10.36890/iejg.742248.
EndNote Lukács P (October 1, 2020) Symmetric Masking Function of Segments. International Electronic Journal of Geometry 13 2 45–51.
IEEE P. Lukács, “Symmetric Masking Function of Segments”, Int. Electron. J. Geom., vol. 13, no. 2, pp. 45–51, 2020, doi: 10.36890/iejg.742248.
ISNAD Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry 13/2 (October 2020), 45-51. https://doi.org/10.36890/iejg.742248.
JAMA Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. 2020;13:45–51.
MLA Lukács, Péter. “Symmetric Masking Function of Segments”. International Electronic Journal of Geometry, vol. 13, no. 2, 2020, pp. 45-51, doi:10.36890/iejg.742248.
Vancouver Lukács P. Symmetric Masking Function of Segments. Int. Electron. J. Geom. 2020;13(2):45-51.