[1] Belkhirat, A., Papadopoulos, A., Troyanov, M.: Thurston’s weak metric on the Teichmüller space of the torus. Transactions of the American
Mathematical Society, 357(8), 3311-3324 (2005).
[7] Troyanov, M.: Les surfaces euclidienne a singularites coniques, L’Enseign. Math. 32 79–94 (1986).
[8] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller Theory, Vol. 1 (European Mathematical
Society). 507–540 (2007).
On the Moduli Space of Flat Tori Having Unit Area
Year 2021,
Volume: 14 Issue: 1, 59 - 65, 15.04.2021
Inspiring from Thurston's asymmetric metric on Teichmüller spaces, we define and study a natural (weak) metric on the Teichmüller space of the torus. We prove that this weak metric is indeed a metric: it separates points and it is symmetric. We relate this metric with the hyperbolic metric on the upper half-plane. We define another metric which measures how much length of a closed geodesic changes when we deform a flat structure on the torus. We show that these two metrics coincide.
[1] Belkhirat, A., Papadopoulos, A., Troyanov, M.: Thurston’s weak metric on the Teichmüller space of the torus. Transactions of the American
Mathematical Society, 357(8), 3311-3324 (2005).
[7] Troyanov, M.: Les surfaces euclidienne a singularites coniques, L’Enseign. Math. 32 79–94 (1986).
[8] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller Theory, Vol. 1 (European Mathematical
Society). 507–540 (2007).
Sağlam, İ. (2021). On the Moduli Space of Flat Tori Having Unit Area. International Electronic Journal of Geometry, 14(1), 59-65. https://doi.org/10.36890/iejg.754478
AMA
Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. April 2021;14(1):59-65. doi:10.36890/iejg.754478
Chicago
Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 59-65. https://doi.org/10.36890/iejg.754478.
EndNote
Sağlam İ (April 1, 2021) On the Moduli Space of Flat Tori Having Unit Area. International Electronic Journal of Geometry 14 1 59–65.
IEEE
İ. Sağlam, “On the Moduli Space of Flat Tori Having Unit Area”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 59–65, 2021, doi: 10.36890/iejg.754478.
ISNAD
Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry 14/1 (April 2021), 59-65. https://doi.org/10.36890/iejg.754478.
JAMA
Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. 2021;14:59–65.
MLA
Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 59-65, doi:10.36890/iejg.754478.
Vancouver
Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. 2021;14(1):59-65.