Research Article
BibTex RIS Cite
Year 2021, Volume: 14 Issue: 1, 174 - 182, 15.04.2021
https://doi.org/10.36890/iejg.819887

Abstract

References

  • [1] Bazanfaré, M.: A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature. Revista Math. Compl. 13-2, 399–409 (2000).
  • [2] Galloway, G. J.: A generalization of Myers’ theorem and an application to relativistic cosmology. J. Differential Geom. 14-1, 105–116, (1979).
  • [3] Kaboye, I.A. and Bazanfaré, M.: Manifolds with Bakry-Émery Ricci Curvature Bounded Below. Advances in Pure Mathematics. 6, 754-764 (2016).
  • [4] Limoncu, M.: The Bakry-Émery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012).
  • [5] Soylu, Y.: A Myers-type compactness theorem by the use of Bakry-Émery Ricci tensor. Differ. Geom. Appl. 54, 245–250 (2017).
  • [6] Tadano, H.: Some Ambrose and Galloway-type theorems via Bakry-Émery and modfied Ricci curvatures. Pacific J. Math. 294-1, 213-231 (2018).
  • [7] Wan, J.: An extension of Bonnet-Myers theorem. Math. Z. 291, 195–197 (2019).
  • [8] Wei, G. and Wylie, W.: Comparison geometry for the Bakry-Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009).
  • [9] Wu, J.Y.: Myers’ type theorem with the Bakry-Émery Ricci tensor. Ann. Global Anal. Geom. 54-4, 541–549 (2018).

Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature

Year 2021, Volume: 14 Issue: 1, 174 - 182, 15.04.2021
https://doi.org/10.36890/iejg.819887

Abstract

 In this paper we establish some new compactness criteria for complete Riemannian manifolds with Bakry-\'Emery Ricci curvature bounded below. These results improve or generalize previous ones obtained by H. Tadano [6], J. Wan [7], I.A. Kaboye and M. Bazanfar\'e [3]. We also prove a volume comparison theorem for such manifolds.

References

  • [1] Bazanfaré, M.: A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature. Revista Math. Compl. 13-2, 399–409 (2000).
  • [2] Galloway, G. J.: A generalization of Myers’ theorem and an application to relativistic cosmology. J. Differential Geom. 14-1, 105–116, (1979).
  • [3] Kaboye, I.A. and Bazanfaré, M.: Manifolds with Bakry-Émery Ricci Curvature Bounded Below. Advances in Pure Mathematics. 6, 754-764 (2016).
  • [4] Limoncu, M.: The Bakry-Émery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012).
  • [5] Soylu, Y.: A Myers-type compactness theorem by the use of Bakry-Émery Ricci tensor. Differ. Geom. Appl. 54, 245–250 (2017).
  • [6] Tadano, H.: Some Ambrose and Galloway-type theorems via Bakry-Émery and modfied Ricci curvatures. Pacific J. Math. 294-1, 213-231 (2018).
  • [7] Wan, J.: An extension of Bonnet-Myers theorem. Math. Z. 291, 195–197 (2019).
  • [8] Wei, G. and Wylie, W.: Comparison geometry for the Bakry-Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009).
  • [9] Wu, J.Y.: Myers’ type theorem with the Bakry-Émery Ricci tensor. Ann. Global Anal. Geom. 54-4, 541–549 (2018).
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Issa A. Kaboye This is me

Mahamane Mahi Harouna

Mahaman Bazanfaré 0000-0002-8085-2830

Publication Date April 15, 2021
Acceptance Date March 16, 2021
Published in Issue Year 2021 Volume: 14 Issue: 1

Cite

APA Kaboye, I. A., Harouna, M. M., & Bazanfaré, M. (2021). Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature. International Electronic Journal of Geometry, 14(1), 174-182. https://doi.org/10.36890/iejg.819887
AMA Kaboye IA, Harouna MM, Bazanfaré M. Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature. Int. Electron. J. Geom. April 2021;14(1):174-182. doi:10.36890/iejg.819887
Chicago Kaboye, Issa A., Mahamane Mahi Harouna, and Mahaman Bazanfaré. “Some Myers-Type Theorems and Comparison Theorems for Manifolds With Modified Ricci Curvature”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 174-82. https://doi.org/10.36890/iejg.819887.
EndNote Kaboye IA, Harouna MM, Bazanfaré M (April 1, 2021) Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature. International Electronic Journal of Geometry 14 1 174–182.
IEEE I. A. Kaboye, M. M. Harouna, and M. Bazanfaré, “Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 174–182, 2021, doi: 10.36890/iejg.819887.
ISNAD Kaboye, Issa A. et al. “Some Myers-Type Theorems and Comparison Theorems for Manifolds With Modified Ricci Curvature”. International Electronic Journal of Geometry 14/1 (April 2021), 174-182. https://doi.org/10.36890/iejg.819887.
JAMA Kaboye IA, Harouna MM, Bazanfaré M. Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature. Int. Electron. J. Geom. 2021;14:174–182.
MLA Kaboye, Issa A. et al. “Some Myers-Type Theorems and Comparison Theorems for Manifolds With Modified Ricci Curvature”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 174-82, doi:10.36890/iejg.819887.
Vancouver Kaboye IA, Harouna MM, Bazanfaré M. Some Myers-Type Theorems and Comparison Theorems for Manifolds with Modified Ricci Curvature. Int. Electron. J. Geom. 2021;14(1):174-82.