Review
BibTex RIS Cite
Year 2021, Volume: 14 Issue: 1, 6 - 45, 15.04.2021
https://doi.org/10.36890/iejg.838446

Abstract

References

  • [1] Alegre, P., Blair, D. E., Carriazo, A.: Generalized Sasakian space forms. Israel J. Math. 141, 157–183 (2004).
  • [2] Alodan, H., Chen, B.-Y., Deshmukh, S., Vilcu, G.-E.: A generalized Wintgen inequality for quaternionic CR-submanifolds. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 114 (3), Art 129, 14 pp (2020).
  • [3] Amari, S.: Differential-geometrical methods in statistics. Springer-Verlag, New York, NY (1985).
  • [4] Anciaux, H.: Minimal submanifolds in pseudo-Riemannian geometry, World Scientific, Hackensack, NJ (2011).
  • [5] Aquib, M., Lone, M. S., Lone, M. A.: Generalized Wintgen inequality for bi-slant submanifolds in locally conformal Kaehler space forms. Mat. Vesnik 70 (3), 243–249 (2018).
  • [6] Aquib, M., Shahid, M. H.: Generalized Wintgen inequality for submanifolds in Kenmotsu space forms.Tamkang J. Math. 50 (2), 155–164 (2019).
  • [7] Aydin, M. E., Mihai, I.: Wintgen inequality for statistical surfaces, Math. Inequal. Appl. 22 (1), 123–132 (2019).
  • [8] Aydin, M. E., Mihai, A., Mihai, I. : GeneralizedWintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci. 7 (1), 155–166 (2017).
  • [9] Aytimur, H., Ozgur, C.: Inequalities for submanifolds in statistical manifolds of quasi-constant curvature. Ann. Polon. Math. 121 (3), 197–215 (2018).
  • [10] Bansal, P., Shahid, M. H., Lone, M. A.: Geometric bounds for δ-Casorati curvature in statistical submanifolds of statistical space forms. Balkan J. Geom. Appl. 24 (1), 1–11 (2019).
  • [11] Bansal, P., Uddin, S., Shahid, M. H.: On the normal scalar curvature conjecture in Kenmotsu statistical manifolds. J. Geom. Phys. 142, 37–46 (2019).
  • [12] Barros, M., Chen, B.-Y., Urbano, F.: Quaternion CR-submanifolds of quaternion manifolds. Kodai Math. J. 4, 399–417 (1981).
  • [13] Bejancu, A.: Geometry of CR-submanifolds. D. Reidel Publ. Co., Bodrecht-Boston-Lancaster-London (1986).
  • [14] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203, Birkhäuser, Boston, MA (2002).
  • [15] Borrelli, V., Chen, B.-Y., Morvan, J.-M.: Une caractérisation géométrique de la sphère de Whitney. C. R. Acad. Sci. Paris Sér. I Math. 321, 1485–1490 (1995).
  • [16] Bulca, B., Arslan, K.: Semiparalel Wintgen Ideal Surfaces in En, C. R. Acad. Bulgare Sci. 67 (5), 613–622 (2014).
  • [17] Byrd, P. F., Friedman, M. D.: Handbook of elliptic integrals for engineers and scientists. Second edition, Springer-Verlag, New York- Heidelberg (1971).
  • [18] Borůvka, O.: Sur une classe de surfaces minma plonées dans un espace á quatre dimensions à courbure constante. C. R. Acad. Sci. 187, 334–336 (1928).
  • [19] Boyom, M. N., Jabeen, Z., Lone, M. A., Lone, M. S., Shahid, M. H. Generalized Wintgen inequality for Legendrian submanifolds in Sasakian statistical manifolds. In: Geometric science of information, pp. 407–412, Lecture Notes in Comput. Sci., 11712, Springer, Cham, 2019.
  • [20] Bryant, R. L. Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Diff. Geom. 17, 455–473 (1982).
  • [21] Carriazo, A.: Bi-slant immersions. in: Proc. ICRAMS 2000, Kharagpur, India, pp. 88–97 (2000).
  • [22] Castro, I.: Lagrangian surfaces with circular ellipse of curvature in complex space forms. Math. Proc. Cambridge. Philo. Soc. 136, 239–245 (2004).
  • [23] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990).
  • [24] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Belgium (1990).
  • [25] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60, 568–578 (1993).
  • [26] Chen, B.-Y.: Differential geometry of semiring of immersions I. General theory. Bull. Inst. Math. Acad. Sinica 21 (1), 1–34 (1993).
  • [27] Chen, B.-Y.: Mean curvature and shape operator of isometric immersions in real-space forms. Glasgow Math. J. 38, 87–97 (1996).
  • [28] Chen, B.-Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J. 49, 277–297 (1997).
  • [29] Chen, B.-Y.: Interaction of Legendre curves and Lagrangian submanifolds. Israel J. Math. 99, 69–108 (1997).
  • [30] Chen, B.-Y.: Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In: The Third Pacific Rim Geometry Conference (Seoul, 1996), pp. 7–60, Int. Press, Cambridge MA (1998).
  • [31] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 41 (1), 33–41 (1999).
  • [32] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japan. J. Math. 26, 105–127 (2000).
  • [33] Chen, B.-Y.: Riemannian submanifolds. In: Handbook of Differential Geometry. Vol. I, pp. 187–418, North-Holland, Amsterdam (2000).
  • [34] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math. 5, 681–723 (2001).
  • [35] Chen, B.-Y.: δ-invariants, inequalities of submanifolds and their applications. In: Topics in differential geometry, pp. 29–155, Ed. Acad. Romane, Bucharest (2008).
  • [36] Chen, B.-Y.: Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvature. Ann. Global Anal. Geom. 38, 145–160 (2010).
  • [37] Chen, B.-Y.: A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization. Arch. Math. 94, 257–265 (2010).
  • [38] Chen, B.-Y.: A Wintgen type inequality for surfaces in 4D neutral pseudo-Riemannian space forms and its applications to minimal immersions. JMI Int. J. Math. Sci., 1, 1–12 (2010).
  • [39] Chen, B.-Y.: Classification of minimal Lorentz surfaces in indefinite space forms with arbitrary codimension and arbitrary index. Publ. Math. Debrecen. 78 (2), 485–503 (2011).
  • [40] Chen, B.-Y.: Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific, Hackensack, NJ (2011).
  • [41] Chen, B.-Y.: OnWintgen ideal surfaces. In: Riemannian geometry and applications–Proceedings RIGA 2011, pp. 59–74, Ed. Univ. Bucuresti, Bucharest (2011).
  • [42] Chen, B.-Y.: Wintgen ideal surfaces in four-dimensional neutral indefinite space form R^4_2(c). Results Math. 61, 329–345 (2012).
  • [43] Chen, B.-Y.: A tour through δ-invariants: from Nash’s embedding theorem to ideal immersions, best ways of living and beyond. Inst. Math. Publ. 94(108), 67–80 (2013).
  • [44] Chen, B.-Y.: On ideal hypersurfaces of Euclidean 4-space. Arab J. Math. Sci. 19, 129–144 (2013).
  • [45] Chen, B.-Y.: Total mean curvature and submanifolds of finite type. 2nd Edition, World Scientific, Hackensack, NJ (2015).
  • [46] Chen, B.-Y.: Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ (2017).
  • [47] Chen, B.-Y.: Recent developments in δ-Casorati curvatures. Turk. J. Math. 45 (1), 1–46 (2021).
  • [48] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Totally real submanifolds of CPn satisfying a basic equality. Arch. Math. 63, 553–564 (1994).
  • [49] Chen, B.-Y., Houh, C. S.: Totally real submanifolds of a quaternion projective space. Ann. Mat. Pura Appl. 70, 185–199 (1979).
  • [50] Chen, B.-Y., Mihai, A., Mihai, I.: A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results Math. 74 (4), Art. 165, 11 pp. (2019).
  • [51] Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc. 193, 257–266 (1974).
  • [52] Chen, B.-Y., Suceavă, B. D.: Classification theorems for space-like surfaces in 4-dimensional indefinite space forms with index 2. Taiwanese J. Math. 15, 523–541 (2011).
  • [53] Chen, B.-Y., Yamaguchi, S.: Classification of surfaces with totally geodesic Gauss image. Indiana Univ. Math. J. 32, 143–154 (1983).
  • [54] Chen, B.-Y., Yamaguchi, S.: Submanifolds with totally geodesic Gauss image. Geom. Dedicata. 15, 313–322 (1984).
  • [55] Chen, B.-Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor (N.S.). 26, 318–322 (1972).
  • [56] Chen, B.-Y., Yano, K.: Special conformally flat spaces and canal hypersurfaces. Tohoku Math. J. 25, 177–184 (1973).
  • [57] Choudhary,M. A., Bahadir, O., Alsulami, H.: Generalized Wintgen inequality for some submanifolds in golden Riemannian space forms. Balkan J. Geom. Appl. 25 (2), 1–11 (2020).
  • [58] Crasmareanu, M., Hretcanu, C.: Golden differential geometry. Chaos Solitons & Fractals. 38 (5), 1229–1238 (2008).
  • [59] Dajczer, M., Tojeiro, R.: All superconformal surfaces in R4 in terms of minimal surfaces. Math. Z. 261, 869–890 (2009).
  • [60] Dajczer, M., Tojeiro, R.: Submanifolds of codimension two attaining equality in an extrinsic inequality. Math. Proc. Cambridge Philos. Soc. 146 (2), 461–474 (2009).
  • [61] DeSmet, P. J., Dillen, F., Verstraelen, L., Vrancken, L.: A pointwise inequality in submanifold theory. Arch. Math. (Brno). 35, 115–128 (1999).
  • [62] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L.: Tensor products of spherical and equivariant immersions. Bull. Belg. Math. Soc. Simon Stevin. 1 (5), 643–648 (1994).
  • [63] Decu, S.: Extrinsic and intrinsic principal directions of ideal submanifolds. Bull. Transilv. Univ. Brasov Ser. III. 1(50), 93–97 (2008).
  • [64] Decu, S., Haesen, S., Verstraelen, L.: Optimal inequalities involving Casorati curvatures. Bull. Transilvania Univ. of Bra¸sov Series III, Math. Inform. Phys. 14(49), 85–93 (2007).
  • [65] Decu, S., Haesen, S., Verstraelen, L., Vîlcu, G.-E.: Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant ϕ-sectional curvature. Entropy. 20, Art. 529 (2018).
  • [66] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: On the intrinsic Deszcz symmetries and the extrinsic Chen character ofWintgen ideal submanifolds. Tamkang J. Math. 41 (2), 109–116 (2010).
  • [67] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type ofWintgen ideal submanifolds. Rev. Roumaine Math. Pures Appl. 57 (1), 75–90 (2012).
  • [68] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: Ricci and Casorati principal directions of Wintgen ideal submanifolds. Filomat. 28 (4), 657–661 (2014).
  • [69] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. 44, 1–34 (1992).
  • [70] Deszcz, R., Petrović–Torgašev, M., Sentürk, Z., Verstraelen, L.: Characterization of the pseudo-symmetries of ideal Wintgen submanifolds of dimension 3. Publ. Inst. Math. (Beograd) (N.S.). 88(102), 53–65 (2010).
  • [71] Dillen, F., Fastenakels, J., Van der Veken, J.: A pinching theorem for the normal scalar curvature of invariant submanifolds. J. Geom. Phys. 57, 833–840 (2007).
  • [72] Dillen, F., Fastenakels, J., Van der Veken, J.: Remarks on an inequality involving the normal scalar curvature. In: Pure and applied differential geometry-PADGE 2007, pp. 83–92, Ber. Math., Shaker Verlag, Aachen (2007).
  • [73] Dragomir, S., Ornea, L.: Locally Conformal Kaehler Geometry. Birkhauser, Basel (1998).
  • [74] Friedrich, Th.: On surfaces in four-spaces. Ann. Glob. Anal. Geom. 2, 257-287 (1984).
  • [75] Friedrich, Th.: On superminimal surfaces. Arch. Math. (Brno). 33, 41-56 (1997).
  • [76] Furuhata, H.: Hypersurfaces in statistical manifolds. Differential Geom. Appl. 27, 420–429 (2009).
  • [77] Furuhata, H., Hasegawa, I., Okuyama, Y., Sato,K.: Kenmotsu statistical manifolds and warped product. J. Geom. 108, 1175–1191 (2017).
  • [78] Ge, J., Tang, Z.: A proof of the DDVV conjecture and its equality case. Pacific J. Math. 237, 87–95 (2008).
  • [79] Gheysens, L., Verheyen, P., Verstraelen, L.: Sur les surfaces A ou les surfaces de Chen. C. R. Acad. Sci. Paris Sér. I Math. 292, 913–916 (1981).
  • [80] Gheysens, L., Verheyen, P., Verstraelen, L.: Characterization and examples of Chen submanifolds. J. Geom. 20, 47–62 (1983).
  • [81] Gołąb, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.). 29 (3), 249–254 (1975).
  • [82] Görünüş, R., Erken, I. K., Yazla, A., Murathan, C.: A generalizedWintgen inequality for Legendrian submanifolds in almost Kenmotsu statistical manifolds. Int. Electron. J. Geom. 12 (1), 43–56 (2019).
  • [83] Guadalupe, I. V., Rodriguez, L.: Normal curvature of surfaces in space forms. Pacific J. Math. 106, 95–103 (1983).
  • [84] Haesen, S.: Optimal inequalities for embedded space-times. Kragujevac J. Math. 28, 69–85 (2005).
  • [85] Hoffman, D., Osserman, R.: The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 236 (1980).
  • [86] Hui, S. K., Lemence, R. S., Mandal, P.: Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms. Comment. Math. Univ. Carolin. 61 (1), 105–117 (2020).
  • [87] Ishihara, S.: Quaternion Kählerian manifolds. J. Differential Geometry. 9, 483–500 (1974).
  • [88] Kashiwada, T.: Some properties of locally conformally Kaehler manifolds. Hokkaido J. Math. 8, 191–198 (1979).
  • [89] Kommerell, K.: Rimannsche Flächen im ebenen Raum von vier Dimensionen. Math. Ann. 60, 548–596 (1905).
  • [90] Kwietniewski, S.: Über Flächen der 4-dimensionalen Raumes deren Tangentialebenen paarweise isoklin sind. Doctoral Dissertation, University of Zürich (1902).
  • [91] Li, T., Ma, X.,Wang, C.: Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China. 10 (1), 111–136 (2015).
  • [92] Li, T., Ma, X., Wang, C., Xie, Z.: Wintgen ideal submanifolds of codimension two, complex curves, and Möbius geometry. Tohoku Math. J. 68 (4), 621–638 (2016).
  • [93] Loo, B.: The space of harmonic maps of S2 into S4. Trans. Amer. Math. Soc. 313, 81–102 (1989).
  • [94] Lu, Z.: Normal scalar curvature conjecture and its applications. J. Funct. Anal. 261, 1284–1308 (2011).
  • [95] Ma, X., Xie, Z.: The Möbius geometry of Wintgen ideal submanifolds. In: Real and complex submanifolds, pp. 411–425, Springer Proc. Math. Stat., 106, Springer, Tokyo (2014).
  • [96] Macsim, G., Ghişoiu, V.: Generalized Wintgen inequality for Lagrangian submanifolds in quaternionic space forms. Math. Inequal. Appl. 22 (3), 803–813 (2019).
  • [97] Matsumoto, K.: Locally conformally Kaehler manifolds and their applications. Mem. Sect. Stiit. Acad. Romania Ser. IV 14, 7–49 (1991).
  • [98] Mihai, A.: Scalar normal curvature of Lagrangian 3-dimensional submanifolds in complex space forms. In: Pure and applied differential geometry–ADGE 2007, pp. 171–177, Ber. Math., Shaker Verlag, Aachen (2007).
  • [99] Mihai, A., Mihai, I.: CR-submanifolds in complex and Sasakian space forms. In: Geometry of Cauchy-Riemann submanifolds, pp. 217–266, Springer, Singapore (2016).
  • [100] Mihai, I.: On generalized Wintgen inequality. In: Riemannian geometry and applications–Proceedings RIGA 2011, pp. 203–208, Ed. Univ. Bucure¸sti, Bucharest (2011).
  • [101] Mihai, I.: On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms. Nonlinear Anal. 95, 714–720 (2014).
  • [102] Mihai, I.: On the generalized Wintgen inequality for submanifolds in Sasakian space forms. In: Riemannian Geometry and Applications– Proceedings RIGA 2014, pp. 153–158, Editura Univ. Bucur., Bucharest (2014).
  • [103] Mihai, I.: On the generalized Wintgen inequality for submanifolds in complex and Sasakian space forms.In: Recent advances in the geometry of submanifolds–dedicated to the memory of Franki Dillen (1963–2013), pp. 111–126, Contemp. Math., 674, Amer. Math. Soc., Providence, RI (2016).
  • [104] Mihai, I.: On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms. Tohoku Math. J. 69 (1), 43–53 (2017).
  • [105] Murathan, C., Şahin, B. : A study of Wintgen like inequality for submanifolds in statistical warped product manifolds. J. Geom. 109 (2), Art. 30, 18 pp (2018).
  • [106] Ogiue, K.: Differential geometry of Kaehler submanifolds. Adv. Math. 13, 73–114 (1974).
  • [107] Opozda, B.: Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom. 48 (4), 357–395 (2015).
  • [108] Opozda, B.: A sectional curvature for statistical structures. Linear Algebra Appl. 497, 134–161 (2016).
  • [109] Ou, Y.-L., Chen, B.-Y.: Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry. World Scientific, Hackensack, NJ (2020).
  • [110] Petrović-Torgašev, M.: Deszcz symmetries of ideal submanifolds. Bull. Transilv. Univ. Bra¸sov Ser. B (N.S.). 14(49), suppl., 249–262 (2007).
  • [111] Petrović-Torgašev, M., Panti´c, A.: Pseudo-symmetries of generalizedWintgen ideal Lagrangian submanifolds. Publ. Inst. Math. (Beograd) (N.S.) 103(117), 181–190 (2018).
  • [112] Petrović-Torgašev, M., Verstraelen, L.: On Deszcz symmetries of Wintgen ideal submanifolds. Arch. Math. (Brno). 44, 57–67 (2008).
  • [113] Ö. Poyraz, N., Ya¸sar, E.: Lightlike hypersurfaces of a golden semi-Riemannian manifold. Mediterr. J. Math. 14 (5) Paper No. 204, 20 pp (2017).
  • [114] Reckziegel, H.: Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion. In: Global Diff. Geom and Global Analysis (1984), Lecture Notes in Mathematics 12, pp. 264–279 (1985).
  • [115] Rouxel, B.: Harmonic spheres of a submanifold in Euclidean space. In: Proc. Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991), pp. 357–364, Aristotle Univ. Thessaloniki, Thessaloniki (1992).
  • [116] Rouxel, B.: Chen submanifolds. In: Geometry and topology of submanifolds, VI (Leuven, 1993/Brussels, 1993), pp. 185–198, World Sci. Publ., River Edge, NJ (1994).
  • [117] Sasaki, M.: Space-like maximal surfaces in 4-dimensional space forms of index 2. Tokyo J. Math. 25, 295–306 (2002).
  • [118] Schouten, J. A., van Kampen, E. R. : Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde. Math. Ann. 103, 752–783 (1930).
  • [119] Šebeković, A.: Symmetries of Wintgen ideal submanifolds. Bull. Transilv. Univ. Bra¸sov Ser. III 1(50), 333–341 (2008).
  • [120] Šebeković, A., Petrovi´c-Torgašev, M., Panti´c, A.: Pseudosymmetry properties of generalisedWintgen ideal Legendrian submanifolds, Filomat. 33 (4), 1209–1215 (2019).
  • [121] Sentürk, Z.: Characterisation of the Deszcz symmetric ideal Wintgen submanifolds. An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.). 53, suppl. 1, 309–316 (2007).
  • [122] Şahin, B.: Slant submanifolds of quaternion Kaehler manifolds. Comm. Korean Math. Soc. 22 (1), 23–35 (2007).
  • [123] Shima, H.: The geometry of Hessian structures. World Scientific, Hackensack, NJ (2007).
  • [124] Siddiqui, A. N., Ahmad, K.: GeneralizedWintgen inequality for totally real submanifolds in LCS-manifolds. Balkan J. Geom. Appl. 24 (2), 53–62 (2019).
  • [125] Siddiqui, A. N., Al-Solamy, F. R., Shahid, M. H., Mihai, I.: On CR-statistical submanifolds of holomorphic statistical manifolds. arXiv:2009.12055v1 [math.DG], 25 September 2020.
  • [126] Siddiqui, A. N., Chen, B.-Y., Bahadir, O.: Statistical solitons and inequalities for statistical warped product submanifolds, Mathematics. (7), Art. 797, 19 pp (2019).
  • [127] Siddiqui, A. N., Shahid, M. H.: On totally real statistical submanifolds. Filomat. 32 (13), 4473–4483 (2018).
  • [128] Tachibana, S.-I.: A theorem on Riemannian manifolds of positive curvature operator. Proc. Japan Acad. 50, 301–302 (1974).
  • [129] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1), 131–190 (1976).
  • [130] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314, 349–379 (1989).
  • [131] Todjihounde, L.: Dualistic structures on warped product manifolds. Diff. Geom. Dyn. Syst. 8, 278–284 (2006).
  • [132] Vaisman, I.: On locally conformal almost Kaehler manifolds. Israel J. Math. 24, 338–351 (1976).
  • [133] Vos, P. W.: Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Stat. Math. 41, 429–450 (1989).
  • [134] Wang, C.: Möbius geometry of submanifolds in Sn. Manuscripta Math. 96, 517–534 (1998).
  • [135] Wang, C., Xie, Z.: Classification of Möbius homogenous surfaces in S4. Ann. Glob. Anal. Geom. 46, 241–257 (2014).
  • [136] Webster, S. M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geometry 13 (1), 25–41 (1978).
  • [137] Wintgen, P.: Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979).
  • [138] Xie, Z.: Wintgen ideal submanifolds with vanishing Möbius form, Ann. Global Anal. Geom. 48 (4), 331–343 (2015).
  • [139] Xie, Z.: Three special classes of Wintgen ideal submanifolds, J. Geom. Phys. 114, 523–533 (2017).
  • [140] Xie, Z., Li, T., Ma, X., Wang, C.: Möbius geometry of three-dimensional Wintgen ideal submanifolds in S5. Sci. China Math. 57 (6), 1203–1220 (2014).
  • [141] Xie, Z., Li, T., Ma, X., Wang, C.: Wintgen ideal submanifolds: reduction theorems and a coarse classification. Ann. Global Anal. Geom. 53 (3), 377–403 (2018).

Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds

Year 2021, Volume: 14 Issue: 1, 6 - 45, 15.04.2021
https://doi.org/10.36890/iejg.838446

Abstract

P. Wintgen proved in [Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979)] that the Gauss curvature $G$ and the normal curvature $K^D$ of a surface in the Euclidean 4-space $E^4$ satisfy $$G+|K^D|\leq \Vert H\Vert ^2,$$ where $\Vert H\Vert ^2$ is the squared mean curvature. A surface $M^{2}$ in $E^4$ is called a {Wintgen ideal} surface if it satisfies the equality case of the inequality identically. Wintgen ideal surfaces in $E^4$ form an important family of surfaces; namely, surfaces with circular ellipse of curvature. In 1999, P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken gave a conjecture for Wintgen inequality on Riemannian submanifolds in real space forms, which was well-known as the DDVV conjecture. Later, the DDVV conjecture was proven by Z. Lu and by Ge and Z. Tang independently.

In this paper, we provide a comprehensive survey on recent developments in Wintgen inequality and Wintgen ideal submanifolds.

References

  • [1] Alegre, P., Blair, D. E., Carriazo, A.: Generalized Sasakian space forms. Israel J. Math. 141, 157–183 (2004).
  • [2] Alodan, H., Chen, B.-Y., Deshmukh, S., Vilcu, G.-E.: A generalized Wintgen inequality for quaternionic CR-submanifolds. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 114 (3), Art 129, 14 pp (2020).
  • [3] Amari, S.: Differential-geometrical methods in statistics. Springer-Verlag, New York, NY (1985).
  • [4] Anciaux, H.: Minimal submanifolds in pseudo-Riemannian geometry, World Scientific, Hackensack, NJ (2011).
  • [5] Aquib, M., Lone, M. S., Lone, M. A.: Generalized Wintgen inequality for bi-slant submanifolds in locally conformal Kaehler space forms. Mat. Vesnik 70 (3), 243–249 (2018).
  • [6] Aquib, M., Shahid, M. H.: Generalized Wintgen inequality for submanifolds in Kenmotsu space forms.Tamkang J. Math. 50 (2), 155–164 (2019).
  • [7] Aydin, M. E., Mihai, I.: Wintgen inequality for statistical surfaces, Math. Inequal. Appl. 22 (1), 123–132 (2019).
  • [8] Aydin, M. E., Mihai, A., Mihai, I. : GeneralizedWintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci. 7 (1), 155–166 (2017).
  • [9] Aytimur, H., Ozgur, C.: Inequalities for submanifolds in statistical manifolds of quasi-constant curvature. Ann. Polon. Math. 121 (3), 197–215 (2018).
  • [10] Bansal, P., Shahid, M. H., Lone, M. A.: Geometric bounds for δ-Casorati curvature in statistical submanifolds of statistical space forms. Balkan J. Geom. Appl. 24 (1), 1–11 (2019).
  • [11] Bansal, P., Uddin, S., Shahid, M. H.: On the normal scalar curvature conjecture in Kenmotsu statistical manifolds. J. Geom. Phys. 142, 37–46 (2019).
  • [12] Barros, M., Chen, B.-Y., Urbano, F.: Quaternion CR-submanifolds of quaternion manifolds. Kodai Math. J. 4, 399–417 (1981).
  • [13] Bejancu, A.: Geometry of CR-submanifolds. D. Reidel Publ. Co., Bodrecht-Boston-Lancaster-London (1986).
  • [14] Blair, D. E.: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203, Birkhäuser, Boston, MA (2002).
  • [15] Borrelli, V., Chen, B.-Y., Morvan, J.-M.: Une caractérisation géométrique de la sphère de Whitney. C. R. Acad. Sci. Paris Sér. I Math. 321, 1485–1490 (1995).
  • [16] Bulca, B., Arslan, K.: Semiparalel Wintgen Ideal Surfaces in En, C. R. Acad. Bulgare Sci. 67 (5), 613–622 (2014).
  • [17] Byrd, P. F., Friedman, M. D.: Handbook of elliptic integrals for engineers and scientists. Second edition, Springer-Verlag, New York- Heidelberg (1971).
  • [18] Borůvka, O.: Sur une classe de surfaces minma plonées dans un espace á quatre dimensions à courbure constante. C. R. Acad. Sci. 187, 334–336 (1928).
  • [19] Boyom, M. N., Jabeen, Z., Lone, M. A., Lone, M. S., Shahid, M. H. Generalized Wintgen inequality for Legendrian submanifolds in Sasakian statistical manifolds. In: Geometric science of information, pp. 407–412, Lecture Notes in Comput. Sci., 11712, Springer, Cham, 2019.
  • [20] Bryant, R. L. Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Diff. Geom. 17, 455–473 (1982).
  • [21] Carriazo, A.: Bi-slant immersions. in: Proc. ICRAMS 2000, Kharagpur, India, pp. 88–97 (2000).
  • [22] Castro, I.: Lagrangian surfaces with circular ellipse of curvature in complex space forms. Math. Proc. Cambridge. Philo. Soc. 136, 239–245 (2004).
  • [23] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990).
  • [24] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Belgium (1990).
  • [25] Chen, B.-Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60, 568–578 (1993).
  • [26] Chen, B.-Y.: Differential geometry of semiring of immersions I. General theory. Bull. Inst. Math. Acad. Sinica 21 (1), 1–34 (1993).
  • [27] Chen, B.-Y.: Mean curvature and shape operator of isometric immersions in real-space forms. Glasgow Math. J. 38, 87–97 (1996).
  • [28] Chen, B.-Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J. 49, 277–297 (1997).
  • [29] Chen, B.-Y.: Interaction of Legendre curves and Lagrangian submanifolds. Israel J. Math. 99, 69–108 (1997).
  • [30] Chen, B.-Y.: Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In: The Third Pacific Rim Geometry Conference (Seoul, 1996), pp. 7–60, Int. Press, Cambridge MA (1998).
  • [31] Chen, B.-Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. Glasgow Math. J. 41 (1), 33–41 (1999).
  • [32] Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Japan. J. Math. 26, 105–127 (2000).
  • [33] Chen, B.-Y.: Riemannian submanifolds. In: Handbook of Differential Geometry. Vol. I, pp. 187–418, North-Holland, Amsterdam (2000).
  • [34] Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math. 5, 681–723 (2001).
  • [35] Chen, B.-Y.: δ-invariants, inequalities of submanifolds and their applications. In: Topics in differential geometry, pp. 29–155, Ed. Acad. Romane, Bucharest (2008).
  • [36] Chen, B.-Y.: Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvature. Ann. Global Anal. Geom. 38, 145–160 (2010).
  • [37] Chen, B.-Y.: A minimal immersion of hyperbolic plane in neutral pseudo-hyperbolic 4-space and its characterization. Arch. Math. 94, 257–265 (2010).
  • [38] Chen, B.-Y.: A Wintgen type inequality for surfaces in 4D neutral pseudo-Riemannian space forms and its applications to minimal immersions. JMI Int. J. Math. Sci., 1, 1–12 (2010).
  • [39] Chen, B.-Y.: Classification of minimal Lorentz surfaces in indefinite space forms with arbitrary codimension and arbitrary index. Publ. Math. Debrecen. 78 (2), 485–503 (2011).
  • [40] Chen, B.-Y.: Pseudo-Riemannian Geometry, -invariants and Applications. World Scientific, Hackensack, NJ (2011).
  • [41] Chen, B.-Y.: OnWintgen ideal surfaces. In: Riemannian geometry and applications–Proceedings RIGA 2011, pp. 59–74, Ed. Univ. Bucuresti, Bucharest (2011).
  • [42] Chen, B.-Y.: Wintgen ideal surfaces in four-dimensional neutral indefinite space form R^4_2(c). Results Math. 61, 329–345 (2012).
  • [43] Chen, B.-Y.: A tour through δ-invariants: from Nash’s embedding theorem to ideal immersions, best ways of living and beyond. Inst. Math. Publ. 94(108), 67–80 (2013).
  • [44] Chen, B.-Y.: On ideal hypersurfaces of Euclidean 4-space. Arab J. Math. Sci. 19, 129–144 (2013).
  • [45] Chen, B.-Y.: Total mean curvature and submanifolds of finite type. 2nd Edition, World Scientific, Hackensack, NJ (2015).
  • [46] Chen, B.-Y.: Differential geometry of warped product manifolds and submanifolds. World Scientific, Hackensack, NJ (2017).
  • [47] Chen, B.-Y.: Recent developments in δ-Casorati curvatures. Turk. J. Math. 45 (1), 1–46 (2021).
  • [48] Chen, B.-Y., Dillen, F., Verstraelen, L., Vrancken, L.: Totally real submanifolds of CPn satisfying a basic equality. Arch. Math. 63, 553–564 (1994).
  • [49] Chen, B.-Y., Houh, C. S.: Totally real submanifolds of a quaternion projective space. Ann. Mat. Pura Appl. 70, 185–199 (1979).
  • [50] Chen, B.-Y., Mihai, A., Mihai, I.: A Chen first inequality for statistical submanifolds in Hessian manifolds of constant Hessian curvature. Results Math. 74 (4), Art. 165, 11 pp. (2019).
  • [51] Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc. 193, 257–266 (1974).
  • [52] Chen, B.-Y., Suceavă, B. D.: Classification theorems for space-like surfaces in 4-dimensional indefinite space forms with index 2. Taiwanese J. Math. 15, 523–541 (2011).
  • [53] Chen, B.-Y., Yamaguchi, S.: Classification of surfaces with totally geodesic Gauss image. Indiana Univ. Math. J. 32, 143–154 (1983).
  • [54] Chen, B.-Y., Yamaguchi, S.: Submanifolds with totally geodesic Gauss image. Geom. Dedicata. 15, 313–322 (1984).
  • [55] Chen, B.-Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor (N.S.). 26, 318–322 (1972).
  • [56] Chen, B.-Y., Yano, K.: Special conformally flat spaces and canal hypersurfaces. Tohoku Math. J. 25, 177–184 (1973).
  • [57] Choudhary,M. A., Bahadir, O., Alsulami, H.: Generalized Wintgen inequality for some submanifolds in golden Riemannian space forms. Balkan J. Geom. Appl. 25 (2), 1–11 (2020).
  • [58] Crasmareanu, M., Hretcanu, C.: Golden differential geometry. Chaos Solitons & Fractals. 38 (5), 1229–1238 (2008).
  • [59] Dajczer, M., Tojeiro, R.: All superconformal surfaces in R4 in terms of minimal surfaces. Math. Z. 261, 869–890 (2009).
  • [60] Dajczer, M., Tojeiro, R.: Submanifolds of codimension two attaining equality in an extrinsic inequality. Math. Proc. Cambridge Philos. Soc. 146 (2), 461–474 (2009).
  • [61] DeSmet, P. J., Dillen, F., Verstraelen, L., Vrancken, L.: A pointwise inequality in submanifold theory. Arch. Math. (Brno). 35, 115–128 (1999).
  • [62] Decruyenaere, F., Dillen, F., Mihai, I., Verstraelen, L.: Tensor products of spherical and equivariant immersions. Bull. Belg. Math. Soc. Simon Stevin. 1 (5), 643–648 (1994).
  • [63] Decu, S.: Extrinsic and intrinsic principal directions of ideal submanifolds. Bull. Transilv. Univ. Brasov Ser. III. 1(50), 93–97 (2008).
  • [64] Decu, S., Haesen, S., Verstraelen, L.: Optimal inequalities involving Casorati curvatures. Bull. Transilvania Univ. of Bra¸sov Series III, Math. Inform. Phys. 14(49), 85–93 (2007).
  • [65] Decu, S., Haesen, S., Verstraelen, L., Vîlcu, G.-E.: Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant ϕ-sectional curvature. Entropy. 20, Art. 529 (2018).
  • [66] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: On the intrinsic Deszcz symmetries and the extrinsic Chen character ofWintgen ideal submanifolds. Tamkang J. Math. 41 (2), 109–116 (2010).
  • [67] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: On the Roter type ofWintgen ideal submanifolds. Rev. Roumaine Math. Pures Appl. 57 (1), 75–90 (2012).
  • [68] Decu, S., Petrović–Torgašev, M., Šebeković, A., Verstraelen, L.: Ricci and Casorati principal directions of Wintgen ideal submanifolds. Filomat. 28 (4), 657–661 (2014).
  • [69] Deszcz, R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. 44, 1–34 (1992).
  • [70] Deszcz, R., Petrović–Torgašev, M., Sentürk, Z., Verstraelen, L.: Characterization of the pseudo-symmetries of ideal Wintgen submanifolds of dimension 3. Publ. Inst. Math. (Beograd) (N.S.). 88(102), 53–65 (2010).
  • [71] Dillen, F., Fastenakels, J., Van der Veken, J.: A pinching theorem for the normal scalar curvature of invariant submanifolds. J. Geom. Phys. 57, 833–840 (2007).
  • [72] Dillen, F., Fastenakels, J., Van der Veken, J.: Remarks on an inequality involving the normal scalar curvature. In: Pure and applied differential geometry-PADGE 2007, pp. 83–92, Ber. Math., Shaker Verlag, Aachen (2007).
  • [73] Dragomir, S., Ornea, L.: Locally Conformal Kaehler Geometry. Birkhauser, Basel (1998).
  • [74] Friedrich, Th.: On surfaces in four-spaces. Ann. Glob. Anal. Geom. 2, 257-287 (1984).
  • [75] Friedrich, Th.: On superminimal surfaces. Arch. Math. (Brno). 33, 41-56 (1997).
  • [76] Furuhata, H.: Hypersurfaces in statistical manifolds. Differential Geom. Appl. 27, 420–429 (2009).
  • [77] Furuhata, H., Hasegawa, I., Okuyama, Y., Sato,K.: Kenmotsu statistical manifolds and warped product. J. Geom. 108, 1175–1191 (2017).
  • [78] Ge, J., Tang, Z.: A proof of the DDVV conjecture and its equality case. Pacific J. Math. 237, 87–95 (2008).
  • [79] Gheysens, L., Verheyen, P., Verstraelen, L.: Sur les surfaces A ou les surfaces de Chen. C. R. Acad. Sci. Paris Sér. I Math. 292, 913–916 (1981).
  • [80] Gheysens, L., Verheyen, P., Verstraelen, L.: Characterization and examples of Chen submanifolds. J. Geom. 20, 47–62 (1983).
  • [81] Gołąb, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.). 29 (3), 249–254 (1975).
  • [82] Görünüş, R., Erken, I. K., Yazla, A., Murathan, C.: A generalizedWintgen inequality for Legendrian submanifolds in almost Kenmotsu statistical manifolds. Int. Electron. J. Geom. 12 (1), 43–56 (2019).
  • [83] Guadalupe, I. V., Rodriguez, L.: Normal curvature of surfaces in space forms. Pacific J. Math. 106, 95–103 (1983).
  • [84] Haesen, S.: Optimal inequalities for embedded space-times. Kragujevac J. Math. 28, 69–85 (2005).
  • [85] Hoffman, D., Osserman, R.: The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 236 (1980).
  • [86] Hui, S. K., Lemence, R. S., Mandal, P.: Wintgen inequalities on Legendrian submanifolds of generalized Sasakian-space-forms. Comment. Math. Univ. Carolin. 61 (1), 105–117 (2020).
  • [87] Ishihara, S.: Quaternion Kählerian manifolds. J. Differential Geometry. 9, 483–500 (1974).
  • [88] Kashiwada, T.: Some properties of locally conformally Kaehler manifolds. Hokkaido J. Math. 8, 191–198 (1979).
  • [89] Kommerell, K.: Rimannsche Flächen im ebenen Raum von vier Dimensionen. Math. Ann. 60, 548–596 (1905).
  • [90] Kwietniewski, S.: Über Flächen der 4-dimensionalen Raumes deren Tangentialebenen paarweise isoklin sind. Doctoral Dissertation, University of Zürich (1902).
  • [91] Li, T., Ma, X.,Wang, C.: Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China. 10 (1), 111–136 (2015).
  • [92] Li, T., Ma, X., Wang, C., Xie, Z.: Wintgen ideal submanifolds of codimension two, complex curves, and Möbius geometry. Tohoku Math. J. 68 (4), 621–638 (2016).
  • [93] Loo, B.: The space of harmonic maps of S2 into S4. Trans. Amer. Math. Soc. 313, 81–102 (1989).
  • [94] Lu, Z.: Normal scalar curvature conjecture and its applications. J. Funct. Anal. 261, 1284–1308 (2011).
  • [95] Ma, X., Xie, Z.: The Möbius geometry of Wintgen ideal submanifolds. In: Real and complex submanifolds, pp. 411–425, Springer Proc. Math. Stat., 106, Springer, Tokyo (2014).
  • [96] Macsim, G., Ghişoiu, V.: Generalized Wintgen inequality for Lagrangian submanifolds in quaternionic space forms. Math. Inequal. Appl. 22 (3), 803–813 (2019).
  • [97] Matsumoto, K.: Locally conformally Kaehler manifolds and their applications. Mem. Sect. Stiit. Acad. Romania Ser. IV 14, 7–49 (1991).
  • [98] Mihai, A.: Scalar normal curvature of Lagrangian 3-dimensional submanifolds in complex space forms. In: Pure and applied differential geometry–ADGE 2007, pp. 171–177, Ber. Math., Shaker Verlag, Aachen (2007).
  • [99] Mihai, A., Mihai, I.: CR-submanifolds in complex and Sasakian space forms. In: Geometry of Cauchy-Riemann submanifolds, pp. 217–266, Springer, Singapore (2016).
  • [100] Mihai, I.: On generalized Wintgen inequality. In: Riemannian geometry and applications–Proceedings RIGA 2011, pp. 203–208, Ed. Univ. Bucure¸sti, Bucharest (2011).
  • [101] Mihai, I.: On the generalized Wintgen inequality for Lagrangian submanifolds in complex space forms. Nonlinear Anal. 95, 714–720 (2014).
  • [102] Mihai, I.: On the generalized Wintgen inequality for submanifolds in Sasakian space forms. In: Riemannian Geometry and Applications– Proceedings RIGA 2014, pp. 153–158, Editura Univ. Bucur., Bucharest (2014).
  • [103] Mihai, I.: On the generalized Wintgen inequality for submanifolds in complex and Sasakian space forms.In: Recent advances in the geometry of submanifolds–dedicated to the memory of Franki Dillen (1963–2013), pp. 111–126, Contemp. Math., 674, Amer. Math. Soc., Providence, RI (2016).
  • [104] Mihai, I.: On the generalized Wintgen inequality for Legendrian submanifolds in Sasakian space forms. Tohoku Math. J. 69 (1), 43–53 (2017).
  • [105] Murathan, C., Şahin, B. : A study of Wintgen like inequality for submanifolds in statistical warped product manifolds. J. Geom. 109 (2), Art. 30, 18 pp (2018).
  • [106] Ogiue, K.: Differential geometry of Kaehler submanifolds. Adv. Math. 13, 73–114 (1974).
  • [107] Opozda, B.: Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom. 48 (4), 357–395 (2015).
  • [108] Opozda, B.: A sectional curvature for statistical structures. Linear Algebra Appl. 497, 134–161 (2016).
  • [109] Ou, Y.-L., Chen, B.-Y.: Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry. World Scientific, Hackensack, NJ (2020).
  • [110] Petrović-Torgašev, M.: Deszcz symmetries of ideal submanifolds. Bull. Transilv. Univ. Bra¸sov Ser. B (N.S.). 14(49), suppl., 249–262 (2007).
  • [111] Petrović-Torgašev, M., Panti´c, A.: Pseudo-symmetries of generalizedWintgen ideal Lagrangian submanifolds. Publ. Inst. Math. (Beograd) (N.S.) 103(117), 181–190 (2018).
  • [112] Petrović-Torgašev, M., Verstraelen, L.: On Deszcz symmetries of Wintgen ideal submanifolds. Arch. Math. (Brno). 44, 57–67 (2008).
  • [113] Ö. Poyraz, N., Ya¸sar, E.: Lightlike hypersurfaces of a golden semi-Riemannian manifold. Mediterr. J. Math. 14 (5) Paper No. 204, 20 pp (2017).
  • [114] Reckziegel, H.: Horizontal lifts of isometric immersions into the bundle space of a pseudo-Riemannian submersion. In: Global Diff. Geom and Global Analysis (1984), Lecture Notes in Mathematics 12, pp. 264–279 (1985).
  • [115] Rouxel, B.: Harmonic spheres of a submanifold in Euclidean space. In: Proc. Proceedings of the 3rd Congress of Geometry (Thessaloniki, 1991), pp. 357–364, Aristotle Univ. Thessaloniki, Thessaloniki (1992).
  • [116] Rouxel, B.: Chen submanifolds. In: Geometry and topology of submanifolds, VI (Leuven, 1993/Brussels, 1993), pp. 185–198, World Sci. Publ., River Edge, NJ (1994).
  • [117] Sasaki, M.: Space-like maximal surfaces in 4-dimensional space forms of index 2. Tokyo J. Math. 25, 295–306 (2002).
  • [118] Schouten, J. A., van Kampen, E. R. : Zur Einbettungs- und Krümmungstheorie nichtholonomer Gebilde. Math. Ann. 103, 752–783 (1930).
  • [119] Šebeković, A.: Symmetries of Wintgen ideal submanifolds. Bull. Transilv. Univ. Bra¸sov Ser. III 1(50), 333–341 (2008).
  • [120] Šebeković, A., Petrovi´c-Torgašev, M., Panti´c, A.: Pseudosymmetry properties of generalisedWintgen ideal Legendrian submanifolds, Filomat. 33 (4), 1209–1215 (2019).
  • [121] Sentürk, Z.: Characterisation of the Deszcz symmetric ideal Wintgen submanifolds. An. ¸Stiin¸t. Univ. Al. I. Cuza Ia¸si. Mat. (N.S.). 53, suppl. 1, 309–316 (2007).
  • [122] Şahin, B.: Slant submanifolds of quaternion Kaehler manifolds. Comm. Korean Math. Soc. 22 (1), 23–35 (2007).
  • [123] Shima, H.: The geometry of Hessian structures. World Scientific, Hackensack, NJ (2007).
  • [124] Siddiqui, A. N., Ahmad, K.: GeneralizedWintgen inequality for totally real submanifolds in LCS-manifolds. Balkan J. Geom. Appl. 24 (2), 53–62 (2019).
  • [125] Siddiqui, A. N., Al-Solamy, F. R., Shahid, M. H., Mihai, I.: On CR-statistical submanifolds of holomorphic statistical manifolds. arXiv:2009.12055v1 [math.DG], 25 September 2020.
  • [126] Siddiqui, A. N., Chen, B.-Y., Bahadir, O.: Statistical solitons and inequalities for statistical warped product submanifolds, Mathematics. (7), Art. 797, 19 pp (2019).
  • [127] Siddiqui, A. N., Shahid, M. H.: On totally real statistical submanifolds. Filomat. 32 (13), 4473–4483 (2018).
  • [128] Tachibana, S.-I.: A theorem on Riemannian manifolds of positive curvature operator. Proc. Japan Acad. 50, 301–302 (1974).
  • [129] Tanaka, N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections. Japan J. Math. 2 (1), 131–190 (1976).
  • [130] Tanno, S.: Variational problems on contact Riemannian manifolds. Trans. Amer. Math. Soc. 314, 349–379 (1989).
  • [131] Todjihounde, L.: Dualistic structures on warped product manifolds. Diff. Geom. Dyn. Syst. 8, 278–284 (2006).
  • [132] Vaisman, I.: On locally conformal almost Kaehler manifolds. Israel J. Math. 24, 338–351 (1976).
  • [133] Vos, P. W.: Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Stat. Math. 41, 429–450 (1989).
  • [134] Wang, C.: Möbius geometry of submanifolds in Sn. Manuscripta Math. 96, 517–534 (1998).
  • [135] Wang, C., Xie, Z.: Classification of Möbius homogenous surfaces in S4. Ann. Glob. Anal. Geom. 46, 241–257 (2014).
  • [136] Webster, S. M.: Pseudo-Hermitian structures on a real hypersurface. J. Differential Geometry 13 (1), 25–41 (1978).
  • [137] Wintgen, P.: Sur l’inégalité de Chen-Willmore. C. R. Acad. Sci. Paris 288, 993–995 (1979).
  • [138] Xie, Z.: Wintgen ideal submanifolds with vanishing Möbius form, Ann. Global Anal. Geom. 48 (4), 331–343 (2015).
  • [139] Xie, Z.: Three special classes of Wintgen ideal submanifolds, J. Geom. Phys. 114, 523–533 (2017).
  • [140] Xie, Z., Li, T., Ma, X., Wang, C.: Möbius geometry of three-dimensional Wintgen ideal submanifolds in S5. Sci. China Math. 57 (6), 1203–1220 (2014).
  • [141] Xie, Z., Li, T., Ma, X., Wang, C.: Wintgen ideal submanifolds: reduction theorems and a coarse classification. Ann. Global Anal. Geom. 53 (3), 377–403 (2018).
There are 141 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Bang-yen Chen 0000-0002-1270-094X

Publication Date April 15, 2021
Acceptance Date March 3, 2021
Published in Issue Year 2021 Volume: 14 Issue: 1

Cite

APA Chen, B.-y. (2021). Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. International Electronic Journal of Geometry, 14(1), 6-45. https://doi.org/10.36890/iejg.838446
AMA Chen By. Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. Int. Electron. J. Geom. April 2021;14(1):6-45. doi:10.36890/iejg.838446
Chicago Chen, Bang-yen. “Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 6-45. https://doi.org/10.36890/iejg.838446.
EndNote Chen B-y (April 1, 2021) Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. International Electronic Journal of Geometry 14 1 6–45.
IEEE B.-y. Chen, “Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 6–45, 2021, doi: 10.36890/iejg.838446.
ISNAD Chen, Bang-yen. “Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds”. International Electronic Journal of Geometry 14/1 (April 2021), 6-45. https://doi.org/10.36890/iejg.838446.
JAMA Chen B-y. Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. Int. Electron. J. Geom. 2021;14:6–45.
MLA Chen, Bang-yen. “Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 6-45, doi:10.36890/iejg.838446.
Vancouver Chen B-y. Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds. Int. Electron. J. Geom. 2021;14(1):6-45.

Cited By









A classification of Roter type spacetimes
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887821501474