In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield tetrahedron manifolds of Heegaard genus $\le 2$. As a consequence, the eight homogeneous Thurston 3-geometries are realized by tetrahedron manifolds of Heegaard genus $\le 2$. The proof is based on techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental groups.
[1] M. Aschenbrenner, S. Friedl and H. Wilton, Decision problems for 3-manifolds and their fundamental groups, Geometry & Topology Monographs 19 (2015), 201-236.
[2] M. Brittenham and Y.Q. Wu, The classification of exceptional Dehnsurgeries on 2-bridge knots, Commun. Analysis Geom. 9 (1) (2001),97-113.
[3] A. Cavicchioli, E. Molnár and F. Spaggiari, Some tetrahedron manifolds
with Sol geometry and related groups, Journal of Geometry 105 (2014),
601-614.
[4] A. Cavicchioli and F. Spaggiari, Tetrahedron manifold series of Heegaard genus two with knot presentation and Dehn surgery, Acta Math.
Hungarica 131 (4) (2011), 307-322.
[5] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Topology of compact space
forms from Platonic solids I, Topology and its Appl. 156 (2009), 812-
822.
[6] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Dehn surgeries on some
classical links, Proceed. Edinburgh Math. Soc. 54 (2011), 33-45.
[7] A.W.M. Dress, D.H. Huson and E. Molnár, The classification of face-transitive periodic three-dimensional tilings, Acta Crystallogr. A 49(1993), 806-817.
[8] D.L. Johnson, Presentations of Groups, London Math. Soc. Stud.
Texts, vol. 15, Cambridge Univ. Press, Cambridge, 1990.
[9] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-
Verlag, Berlin-Heidelberg-New York, 1976.
[10] B. Martelli and C. Petronio, Dehn Filling of the "magic " 3-manifold, Commun. in Analysis and Geom. 14 (5) (2006), 969-1026.
[11] A.D. Mednykh and A. Yu. Vesnin, On Heegaard genus of three-dimensional
hyperbolic manifolds of small volume, Sb. Math. J. 37 (5) (1996), 893-
897.
[12] A.D. Mednykh and A. Yu. Vesnin, Covering properties of small volume
hyperbolic 3-manifolds, J. Knot Theory Ram. 7 (3) (1998), 381-392.
[13] E. Molnár, Tetrahedron manifolds and space forms, Note Mat. 10
(1990), 335-346.
[14] E. Molnár, Polyhedron complexes with simply transitive group actions
and their realizations, Acta Math. Hung. 59 (1-2) (1992), 175-216.
[15] E. Molnár, On non-Euclidean crystallography, some football manifolds,
Structural Chemistry 23 (2012), 1057-1069.
[16] E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries,
Symmetry: Culture and Science 21 (1-3) (2010), 87-117.
[17] E. Molnár and J. Szirmai, Hyperbolic space forms with crystallographic
applications and visualizations, In: International Conference on Geom-
etry and Graphics, Springer Verlag, Cham (2018), pp. 320-337.
[18] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Universitext, Springer-Verlag, Berlin, 1987.
[19] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(1971), 737-745.
[1] M. Aschenbrenner, S. Friedl and H. Wilton, Decision problems for 3-manifolds and their fundamental groups, Geometry & Topology Monographs 19 (2015), 201-236.
[2] M. Brittenham and Y.Q. Wu, The classification of exceptional Dehnsurgeries on 2-bridge knots, Commun. Analysis Geom. 9 (1) (2001),97-113.
[3] A. Cavicchioli, E. Molnár and F. Spaggiari, Some tetrahedron manifolds
with Sol geometry and related groups, Journal of Geometry 105 (2014),
601-614.
[4] A. Cavicchioli and F. Spaggiari, Tetrahedron manifold series of Heegaard genus two with knot presentation and Dehn surgery, Acta Math.
Hungarica 131 (4) (2011), 307-322.
[5] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Topology of compact space
forms from Platonic solids I, Topology and its Appl. 156 (2009), 812-
822.
[6] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Dehn surgeries on some
classical links, Proceed. Edinburgh Math. Soc. 54 (2011), 33-45.
[7] A.W.M. Dress, D.H. Huson and E. Molnár, The classification of face-transitive periodic three-dimensional tilings, Acta Crystallogr. A 49(1993), 806-817.
[8] D.L. Johnson, Presentations of Groups, London Math. Soc. Stud.
Texts, vol. 15, Cambridge Univ. Press, Cambridge, 1990.
[9] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-
Verlag, Berlin-Heidelberg-New York, 1976.
[10] B. Martelli and C. Petronio, Dehn Filling of the "magic " 3-manifold, Commun. in Analysis and Geom. 14 (5) (2006), 969-1026.
[11] A.D. Mednykh and A. Yu. Vesnin, On Heegaard genus of three-dimensional
hyperbolic manifolds of small volume, Sb. Math. J. 37 (5) (1996), 893-
897.
[12] A.D. Mednykh and A. Yu. Vesnin, Covering properties of small volume
hyperbolic 3-manifolds, J. Knot Theory Ram. 7 (3) (1998), 381-392.
[13] E. Molnár, Tetrahedron manifolds and space forms, Note Mat. 10
(1990), 335-346.
[14] E. Molnár, Polyhedron complexes with simply transitive group actions
and their realizations, Acta Math. Hung. 59 (1-2) (1992), 175-216.
[15] E. Molnár, On non-Euclidean crystallography, some football manifolds,
Structural Chemistry 23 (2012), 1057-1069.
[16] E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries,
Symmetry: Culture and Science 21 (1-3) (2010), 87-117.
[17] E. Molnár and J. Szirmai, Hyperbolic space forms with crystallographic
applications and visualizations, In: International Conference on Geom-
etry and Graphics, Springer Verlag, Cham (2018), pp. 320-337.
[18] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Universitext, Springer-Verlag, Berlin, 1987.
[19] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(1971), 737-745.
Cavicchioli, A., & Spaggiari, F. (2022). All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds. International Electronic Journal of Geometry, 15(2), 192-201. https://doi.org/10.36890/iejg.1102753
AMA
Cavicchioli A, Spaggiari F. All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds. Int. Electron. J. Geom. October 2022;15(2):192-201. doi:10.36890/iejg.1102753
Chicago
Cavicchioli, Alberto, and Fulvia Spaggiari. “All Dehn Fillings of the Whitehead Link Complement Are Tetrahedron Manifolds”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 192-201. https://doi.org/10.36890/iejg.1102753.
EndNote
Cavicchioli A, Spaggiari F (October 1, 2022) All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds. International Electronic Journal of Geometry 15 2 192–201.
IEEE
A. Cavicchioli and F. Spaggiari, “All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 192–201, 2022, doi: 10.36890/iejg.1102753.
ISNAD
Cavicchioli, Alberto - Spaggiari, Fulvia. “All Dehn Fillings of the Whitehead Link Complement Are Tetrahedron Manifolds”. International Electronic Journal of Geometry 15/2 (October 2022), 192-201. https://doi.org/10.36890/iejg.1102753.
JAMA
Cavicchioli A, Spaggiari F. All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds. Int. Electron. J. Geom. 2022;15:192–201.
MLA
Cavicchioli, Alberto and Fulvia Spaggiari. “All Dehn Fillings of the Whitehead Link Complement Are Tetrahedron Manifolds”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 192-01, doi:10.36890/iejg.1102753.
Vancouver
Cavicchioli A, Spaggiari F. All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds. Int. Electron. J. Geom. 2022;15(2):192-201.