All Dehn Fillings of the Whitehead Link Complement are Tetrahedron Manifolds
Year 2022,
Volume: 15 Issue: 2, 192 - 201, 31.10.2022
Alberto Cavicchioli
,
Fulvia Spaggiari
Abstract
In this paper we show that Dehn surgeries on the oriented components of the Whitehead link yield tetrahedron manifolds of Heegaard genus $\le 2$. As a consequence, the eight homogeneous Thurston 3-geometries are realized by tetrahedron manifolds of Heegaard genus $\le 2$. The proof is based on techniques of Combinatorial Group Theory, and geometric presentations of manifold fundamental groups.
References
- [1] M. Aschenbrenner, S. Friedl and H. Wilton, Decision problems for 3-manifolds and their fundamental groups, Geometry & Topology Monographs 19 (2015), 201-236.
- [2] M. Brittenham and Y.Q. Wu, The classification of exceptional Dehnsurgeries on 2-bridge knots, Commun. Analysis Geom. 9 (1) (2001),97-113.
- [3] A. Cavicchioli, E. Molnár and F. Spaggiari, Some tetrahedron manifolds
with Sol geometry and related groups, Journal of Geometry 105 (2014),
601-614.
- [4] A. Cavicchioli and F. Spaggiari, Tetrahedron manifold series of Heegaard genus two with knot presentation and Dehn surgery, Acta Math.
Hungarica 131 (4) (2011), 307-322.
- [5] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Topology of compact space
forms from Platonic solids I, Topology and its Appl. 156 (2009), 812-
822.
- [6] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Dehn surgeries on some
classical links, Proceed. Edinburgh Math. Soc. 54 (2011), 33-45.
- [7] A.W.M. Dress, D.H. Huson and E. Molnár, The classification of face-transitive periodic three-dimensional tilings, Acta Crystallogr. A 49(1993), 806-817.
- [8] D.L. Johnson, Presentations of Groups, London Math. Soc. Stud.
Texts, vol. 15, Cambridge Univ. Press, Cambridge, 1990.
- [9] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-
Verlag, Berlin-Heidelberg-New York, 1976.
- [10] B. Martelli and C. Petronio, Dehn Filling of the "magic " 3-manifold, Commun. in Analysis and Geom. 14 (5) (2006), 969-1026.
- [11] A.D. Mednykh and A. Yu. Vesnin, On Heegaard genus of three-dimensional
hyperbolic manifolds of small volume, Sb. Math. J. 37 (5) (1996), 893-
897.
- [12] A.D. Mednykh and A. Yu. Vesnin, Covering properties of small volume
hyperbolic 3-manifolds, J. Knot Theory Ram. 7 (3) (1998), 381-392.
- [13] E. Molnár, Tetrahedron manifolds and space forms, Note Mat. 10
(1990), 335-346.
- [14] E. Molnár, Polyhedron complexes with simply transitive group actions
and their realizations, Acta Math. Hung. 59 (1-2) (1992), 175-216.
- [15] E. Molnár, On non-Euclidean crystallography, some football manifolds,
Structural Chemistry 23 (2012), 1057-1069.
- [16] E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries,
Symmetry: Culture and Science 21 (1-3) (2010), 87-117.
- [17] E. Molnár and J. Szirmai, Hyperbolic space forms with crystallographic
applications and visualizations, In: International Conference on Geom-
etry and Graphics, Springer Verlag, Cham (2018), pp. 320-337.
- [18] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Universitext, Springer-Verlag, Berlin, 1987.
- [19] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(1971), 737-745.
- [20] G.D. Mostow, Strong rigidity of locally symmetric spaces, Princeton
Univ. Press, Princeton, N.Y., 1973.
- [21] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21
(1973), 255-286.
- [22] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15
(1983), 401-487.
- [23] J. Singer, Three-dimensional manifolds and their Heegaard diagrams,
Trans. Amer. Math. Soc. 35 (1933), 88-111.
- [24] F. Spaggiari, On a theorem of L. Moser, Boll. U.M.I. 7-A (7) (1993),
421-429.
- [25] F. Spaggiari, The combinatorics of some tetrahedron manifolds, Discrete Math. 300 (2005), 163-179.
Year 2022,
Volume: 15 Issue: 2, 192 - 201, 31.10.2022
Alberto Cavicchioli
,
Fulvia Spaggiari
References
- [1] M. Aschenbrenner, S. Friedl and H. Wilton, Decision problems for 3-manifolds and their fundamental groups, Geometry & Topology Monographs 19 (2015), 201-236.
- [2] M. Brittenham and Y.Q. Wu, The classification of exceptional Dehnsurgeries on 2-bridge knots, Commun. Analysis Geom. 9 (1) (2001),97-113.
- [3] A. Cavicchioli, E. Molnár and F. Spaggiari, Some tetrahedron manifolds
with Sol geometry and related groups, Journal of Geometry 105 (2014),
601-614.
- [4] A. Cavicchioli and F. Spaggiari, Tetrahedron manifold series of Heegaard genus two with knot presentation and Dehn surgery, Acta Math.
Hungarica 131 (4) (2011), 307-322.
- [5] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Topology of compact space
forms from Platonic solids I, Topology and its Appl. 156 (2009), 812-
822.
- [6] A. Cavicchioli, F. Spaggiari and A.I. Telloni, Dehn surgeries on some
classical links, Proceed. Edinburgh Math. Soc. 54 (2011), 33-45.
- [7] A.W.M. Dress, D.H. Huson and E. Molnár, The classification of face-transitive periodic three-dimensional tilings, Acta Crystallogr. A 49(1993), 806-817.
- [8] D.L. Johnson, Presentations of Groups, London Math. Soc. Stud.
Texts, vol. 15, Cambridge Univ. Press, Cambridge, 1990.
- [9] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-
Verlag, Berlin-Heidelberg-New York, 1976.
- [10] B. Martelli and C. Petronio, Dehn Filling of the "magic " 3-manifold, Commun. in Analysis and Geom. 14 (5) (2006), 969-1026.
- [11] A.D. Mednykh and A. Yu. Vesnin, On Heegaard genus of three-dimensional
hyperbolic manifolds of small volume, Sb. Math. J. 37 (5) (1996), 893-
897.
- [12] A.D. Mednykh and A. Yu. Vesnin, Covering properties of small volume
hyperbolic 3-manifolds, J. Knot Theory Ram. 7 (3) (1998), 381-392.
- [13] E. Molnár, Tetrahedron manifolds and space forms, Note Mat. 10
(1990), 335-346.
- [14] E. Molnár, Polyhedron complexes with simply transitive group actions
and their realizations, Acta Math. Hung. 59 (1-2) (1992), 175-216.
- [15] E. Molnár, On non-Euclidean crystallography, some football manifolds,
Structural Chemistry 23 (2012), 1057-1069.
- [16] E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries,
Symmetry: Culture and Science 21 (1-3) (2010), 87-117.
- [17] E. Molnár and J. Szirmai, Hyperbolic space forms with crystallographic
applications and visualizations, In: International Conference on Geom-
etry and Graphics, Springer Verlag, Cham (2018), pp. 320-337.
- [18] J. M. Montesinos, Classical Tesselations and Three-Manifolds, Universitext, Springer-Verlag, Berlin, 1987.
- [19] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(1971), 737-745.
- [20] G.D. Mostow, Strong rigidity of locally symmetric spaces, Princeton
Univ. Press, Princeton, N.Y., 1973.
- [21] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math. 21
(1973), 255-286.
- [22] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15
(1983), 401-487.
- [23] J. Singer, Three-dimensional manifolds and their Heegaard diagrams,
Trans. Amer. Math. Soc. 35 (1933), 88-111.
- [24] F. Spaggiari, On a theorem of L. Moser, Boll. U.M.I. 7-A (7) (1993),
421-429.
- [25] F. Spaggiari, The combinatorics of some tetrahedron manifolds, Discrete Math. 300 (2005), 163-179.