Research Article
BibTex RIS Cite

Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$

Year 2023, Volume: 16 Issue: 2, 577 - 593, 29.10.2023
https://doi.org/10.36890/iejg.1274663

Abstract

Using a new orthogonal frame with curvature in $E_1^3$ and we put forth a new general formulation for inextensible flows of space curves in this work. We demonstrate presufficient conditions and prove the necessary conditions for inextensible curve flow which is a partial differential equations (PDE) incorporating the curvatures and torsion.

References

  • [1] Abdel-All, N., Mohamed, S., Al-Dossary, M.: Evolution of generalized space curve as a function of its local geometry. Applied Mathematics. 5 (15),(2014) 2381-2392.
  • [2] Bukcu, B., Karacan, M. K.: On the modified orthogonal frame with curvature and torsion in 3-space. Mathematical Sciences and Applications E-Notes. 4 (1), (2016) 184-188.
  • [3] Desbrun, M., Cani-Gascuel, M. P.: Active implicit surface for animation. Procedings of Graphics Interface. 18 (1), (1998) 143-150.
  • [4] Hartmand, P., Winter, A.: On the fundamental equations of differential geometry. American Journal Mathematics. 72 (4), (1950) 757-774.
  • [5] Gurbuz, N.: Inextensible flows of spacelike, timelike and null curves. International Journal of Contemporary Mathematical Sciences. 4 (32), (2009) 1599-1604.
  • [6] Inoguchi, J., and Lee, S., Null curves in Minkowski 3-space, International Electronic Journal of Geometry, 2 (2008) 40-83.
  • [7] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision. 1 (4), (1988) 321-331.
  • [8] Kwon, D. Y., Park, F. C., Chi, D. P.: Inextensible flows of curves and developable surfaces. Applied Mathematics Letter. 18 (10), (2005) 1156-1162.
  • [9] Kwon, D. Y., Park, F. C.: Evolution of inelastic plane curves. Applied Mathematics Letter. 12 (6), (1999) 115-119.
  • [10] Latifi, D., Razavi, A.: Inextensible flows of curves in Minkowskian space. Advanced Studies in Theoretical Physics. 2 (16), (2008) 761-768.
  • [11] Lopez, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (1) (2014) 44-107.
  • [12] Sasai, T.: The fundamental theorem of analytic apace curves and apparent singularities of Fuchsian differential equations, Tohoku Mathematical Journal, 36 (1), (1984) 17-24.
  • [13] Yıldız, Ö. G., Okuyucu, O. Z., Inextensible Flows of Curves in Lie Groups. Caspian Journal of Mathematical Sciences, 2 (1),(2013) 23-32.
  • [14] Yıldız, Ö. G., Tosun, M.:A note on evolution of curves in the Minkowski spaces. Advances in Applied Clifford Algebras. 27 (3),(2017) 2873-2884.
  • [15] Yüzbaşı, Z. K., Yoon D. W.:Inextensible Flows of Curves on Lightlike Surfaces. Mathematics 6 (11),(2018) 224
  • [16] Walrave, J.: Curves and surfaces in Minkowski space. Ph.D. thesis, Leuven University (1995).
Year 2023, Volume: 16 Issue: 2, 577 - 593, 29.10.2023
https://doi.org/10.36890/iejg.1274663

Abstract

References

  • [1] Abdel-All, N., Mohamed, S., Al-Dossary, M.: Evolution of generalized space curve as a function of its local geometry. Applied Mathematics. 5 (15),(2014) 2381-2392.
  • [2] Bukcu, B., Karacan, M. K.: On the modified orthogonal frame with curvature and torsion in 3-space. Mathematical Sciences and Applications E-Notes. 4 (1), (2016) 184-188.
  • [3] Desbrun, M., Cani-Gascuel, M. P.: Active implicit surface for animation. Procedings of Graphics Interface. 18 (1), (1998) 143-150.
  • [4] Hartmand, P., Winter, A.: On the fundamental equations of differential geometry. American Journal Mathematics. 72 (4), (1950) 757-774.
  • [5] Gurbuz, N.: Inextensible flows of spacelike, timelike and null curves. International Journal of Contemporary Mathematical Sciences. 4 (32), (2009) 1599-1604.
  • [6] Inoguchi, J., and Lee, S., Null curves in Minkowski 3-space, International Electronic Journal of Geometry, 2 (2008) 40-83.
  • [7] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision. 1 (4), (1988) 321-331.
  • [8] Kwon, D. Y., Park, F. C., Chi, D. P.: Inextensible flows of curves and developable surfaces. Applied Mathematics Letter. 18 (10), (2005) 1156-1162.
  • [9] Kwon, D. Y., Park, F. C.: Evolution of inelastic plane curves. Applied Mathematics Letter. 12 (6), (1999) 115-119.
  • [10] Latifi, D., Razavi, A.: Inextensible flows of curves in Minkowskian space. Advanced Studies in Theoretical Physics. 2 (16), (2008) 761-768.
  • [11] Lopez, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 7 (1) (2014) 44-107.
  • [12] Sasai, T.: The fundamental theorem of analytic apace curves and apparent singularities of Fuchsian differential equations, Tohoku Mathematical Journal, 36 (1), (1984) 17-24.
  • [13] Yıldız, Ö. G., Okuyucu, O. Z., Inextensible Flows of Curves in Lie Groups. Caspian Journal of Mathematical Sciences, 2 (1),(2013) 23-32.
  • [14] Yıldız, Ö. G., Tosun, M.:A note on evolution of curves in the Minkowski spaces. Advances in Applied Clifford Algebras. 27 (3),(2017) 2873-2884.
  • [15] Yüzbaşı, Z. K., Yoon D. W.:Inextensible Flows of Curves on Lightlike Surfaces. Mathematics 6 (11),(2018) 224
  • [16] Walrave, J.: Curves and surfaces in Minkowski space. Ph.D. thesis, Leuven University (1995).
There are 16 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Alperen Kızılay 0000-0002-8612-5351

Atakan Tuğkan Yakut 0000-0002-3680-337X

Early Pub Date October 17, 2023
Publication Date October 29, 2023
Acceptance Date August 25, 2023
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Kızılay, A., & Yakut, A. T. (2023). Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$. International Electronic Journal of Geometry, 16(2), 577-593. https://doi.org/10.36890/iejg.1274663
AMA Kızılay A, Yakut AT. Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$. Int. Electron. J. Geom. October 2023;16(2):577-593. doi:10.36890/iejg.1274663
Chicago Kızılay, Alperen, and Atakan Tuğkan Yakut. “Inextensible Flows of Space Curves According to a New Orthogonal Frame With Curvature in $\mathbb{E}_{1}^{3}$”. International Electronic Journal of Geometry 16, no. 2 (October 2023): 577-93. https://doi.org/10.36890/iejg.1274663.
EndNote Kızılay A, Yakut AT (October 1, 2023) Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$. International Electronic Journal of Geometry 16 2 577–593.
IEEE A. Kızılay and A. T. Yakut, “Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$”, Int. Electron. J. Geom., vol. 16, no. 2, pp. 577–593, 2023, doi: 10.36890/iejg.1274663.
ISNAD Kızılay, Alperen - Yakut, Atakan Tuğkan. “Inextensible Flows of Space Curves According to a New Orthogonal Frame With Curvature in $\mathbb{E}_{1}^{3}$”. International Electronic Journal of Geometry 16/2 (October 2023), 577-593. https://doi.org/10.36890/iejg.1274663.
JAMA Kızılay A, Yakut AT. Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$. Int. Electron. J. Geom. 2023;16:577–593.
MLA Kızılay, Alperen and Atakan Tuğkan Yakut. “Inextensible Flows of Space Curves According to a New Orthogonal Frame With Curvature in $\mathbb{E}_{1}^{3}$”. International Electronic Journal of Geometry, vol. 16, no. 2, 2023, pp. 577-93, doi:10.36890/iejg.1274663.
Vancouver Kızılay A, Yakut AT. Inextensible Flows of Space Curves According to a New Orthogonal Frame with Curvature in $\mathbb{E}_{1}^{3}$. Int. Electron. J. Geom. 2023;16(2):577-93.