Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 1, 207 - 2012, 23.04.2024
https://doi.org/10.36890/iejg.1466314

Abstract

References

  • [1] Alías L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200, 1637-1650 (2021).
  • [2] Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, New York, 2016.
  • [3] Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110-135 (1921).
  • [4] Bar, C., Bessa, G.P.: Stochastic completeness and volume growth. Proc. Amer. Math. Soc. 138, 2629-2640 (2010).
  • [5] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333-354 (1975).
  • [6] Cunha, A.W., de Lima, E.L., Mi, R.: Some characterizations of Bach solitons via Ricci curvature. Diff. Geom. Appl. 90, article 102046 (2023).
  • [7] Cunha, A.W., Griffin, E.: On non-compact gradient solitons. Ann. Global Anal. Geom. 63, article 27 (2023).
  • [8] Das, S., Kar, S.: Bach flows of product manifolds. Int. J. Geom. Meth. Mod. Phys. 9, article 1250039 (2012).
  • [9] Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, J. Anal. Math. 58, 99-119 (1992).
  • [10] Émery, M.: Stochastic Calculus on Manifolds. Springer-Verlag, Berlin, 1989.
  • [11] Fefferman, C., Graham, C.R.: Conformal invariants. Astérisque, tome S131, 95-116 (1985).
  • [12] Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1-11 (1959).
  • [13] Grigor’yan, A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1), 161-262 (1983) (in Russian), Engl. transl.: Russian Math. Surveys 38 (1), 190-191 (1983).
  • [14] Grigor’yan, A.: On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds. Mat. Sb. 128 (3), 354-363 (1985) (in Russian), Engl. transl.: Math. USSR Sb 56, 349-358 (1987).
  • [15] Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52, 1102-1108 (1988); translation in Math. USSR-Izv. 33, 425-532 (1989).
  • [16] Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36, 135-249 (1999).
  • [17] Grigor’yan, A.: Heat kernels on weighted manifolds and applications. in: The Ubiquitous Heat Kernel, in: Contemp. Math., Vol. 398 Amer. Math. Soc., Providence, RI, 93-191 2006.
  • [18] Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of the Green formula. J. Math. Pures Appl. 100, 607-632 (2013).
  • [19] Ho, P.T.: Bach flow. J. Geom. Phys. 133, 1-9 (2018).
  • [20] Hsu, E.P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17, 1248-1254 (1989).
  • [21] Karp, L.: Subharmonic functions, harmonic mapping and isometric immersions. in: S.T. Yau (Ed.), Seminar on Differential Geometry, in: Ann. of Math. Stud., vol. 102, Princeton University Press, 1983.
  • [22] Karp, L., Li, P.: The heat equation on complete Riemannian manifolds. unpublished manuscript, (1983).
  • [23] Mannheim, P.D.: Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 56, 340-445 (2006).
  • [24] Mannheim, P.D., Kazanas, D.: Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relat. Grav. 26, 337-361 (1994).
  • [25] Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Amer. Math. Soc. 131, 1283-1288 (2003).
  • [26] Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. American Math. Soc. 822 (2005).
  • [27] Ratti, A., Rigoli, M., Setti, A.G.: On the Omori-Yau maximum principle and its application to differential equations and geometry. J. Funct. Anal. 134, 486-510 (1995).
  • [28] Shin, J.: A note on gradient Bach solitons. Diff. Geom. Appl. 80, article 101842 (2022).
  • [29] Stroock, D.: An Introduction to the Analysis of Paths on a Riemannian Manifold. Math. Surveys and Monographs, volume 4, American Math. Soc (2000).
  • [30] Sturm, K.Th.: Analysis on local Dirichelet spaces I. Recurrence, conservativeness and Liouville properties. J. Reine Angew. Math 456, 173-196 (1994).
  • [31] Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26, 650-623 (1989).
  • [32] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, in:Wadsworth Math. Ser., Wadsworth, Belmont, CA, 821–837 (1983).

Revisiting Gradient Bach Solitons via Maximum Principles

Year 2024, Volume: 17 Issue: 1, 207 - 2012, 23.04.2024
https://doi.org/10.36890/iejg.1466314

Abstract

Supposing that the Ricci curvature has an appropriate lower bound and applying suitable maximum principles, we establish triviality results which guarantee that a gradient Bach soliton must be trivial and Bach-flat. Our approach is based on three main cores: convergence to zero at infinity, polynomial volume growth (both related to complete noncompact Riemannian manifolds) and stochastic completeness.

References

  • [1] Alías L.J., Caminha, A., do Nascimento, F.Y.: A maximum principle related to volume growth and applications. Ann. Mat. Pura Appl. 200, 1637-1650 (2021).
  • [2] Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer Monographs in Mathematics, New York, 2016.
  • [3] Bach, R.: Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs. Math. Z. 9, 110-135 (1921).
  • [4] Bar, C., Bessa, G.P.: Stochastic completeness and volume growth. Proc. Amer. Math. Soc. 138, 2629-2640 (2010).
  • [5] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28, 333-354 (1975).
  • [6] Cunha, A.W., de Lima, E.L., Mi, R.: Some characterizations of Bach solitons via Ricci curvature. Diff. Geom. Appl. 90, article 102046 (2023).
  • [7] Cunha, A.W., Griffin, E.: On non-compact gradient solitons. Ann. Global Anal. Geom. 63, article 27 (2023).
  • [8] Das, S., Kar, S.: Bach flows of product manifolds. Int. J. Geom. Meth. Mod. Phys. 9, article 1250039 (2012).
  • [9] Davies, E.B.: Heat kernel bounds, conservation of probability and the Feller property. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, J. Anal. Math. 58, 99-119 (1992).
  • [10] Émery, M.: Stochastic Calculus on Manifolds. Springer-Verlag, Berlin, 1989.
  • [11] Fefferman, C., Graham, C.R.: Conformal invariants. Astérisque, tome S131, 95-116 (1985).
  • [12] Gaffney, M.P.: The conservation property of the heat equation on Riemannian manifolds. Comm. Pure Appl. Math. 12, 1-11 (1959).
  • [13] Grigor’yan, A.: On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1), 161-262 (1983) (in Russian), Engl. transl.: Russian Math. Surveys 38 (1), 190-191 (1983).
  • [14] Grigor’yan, A.: On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds. Mat. Sb. 128 (3), 354-363 (1985) (in Russian), Engl. transl.: Math. USSR Sb 56, 349-358 (1987).
  • [15] Grigor’yan, A.: Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52, 1102-1108 (1988); translation in Math. USSR-Izv. 33, 425-532 (1989).
  • [16] Grigor’yan, A.: Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. (N.S.) 36, 135-249 (1999).
  • [17] Grigor’yan, A.: Heat kernels on weighted manifolds and applications. in: The Ubiquitous Heat Kernel, in: Contemp. Math., Vol. 398 Amer. Math. Soc., Providence, RI, 93-191 2006.
  • [18] Grigor’yan, A., Masamune, J.: Parabolicity and stochastic completeness of manifolds in terms of the Green formula. J. Math. Pures Appl. 100, 607-632 (2013).
  • [19] Ho, P.T.: Bach flow. J. Geom. Phys. 133, 1-9 (2018).
  • [20] Hsu, E.P.: Heat semigroup on a complete Riemannian manifold. Ann. Probab. 17, 1248-1254 (1989).
  • [21] Karp, L.: Subharmonic functions, harmonic mapping and isometric immersions. in: S.T. Yau (Ed.), Seminar on Differential Geometry, in: Ann. of Math. Stud., vol. 102, Princeton University Press, 1983.
  • [22] Karp, L., Li, P.: The heat equation on complete Riemannian manifolds. unpublished manuscript, (1983).
  • [23] Mannheim, P.D.: Alternatives to dark matter and dark energy. Prog. Part. Nucl. Phys. 56, 340-445 (2006).
  • [24] Mannheim, P.D., Kazanas, D.: Newtonian limit of conformal gravity and the lack of necessity of the second order Poisson equation. Gen. Relat. Grav. 26, 337-361 (1994).
  • [25] Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Amer. Math. Soc. 131, 1283-1288 (2003).
  • [26] Pigola, S., Rigoli, M., Setti, A.G.: Maximum principles on Riemannian manifolds and applications. Mem. American Math. Soc. 822 (2005).
  • [27] Ratti, A., Rigoli, M., Setti, A.G.: On the Omori-Yau maximum principle and its application to differential equations and geometry. J. Funct. Anal. 134, 486-510 (1995).
  • [28] Shin, J.: A note on gradient Bach solitons. Diff. Geom. Appl. 80, article 101842 (2022).
  • [29] Stroock, D.: An Introduction to the Analysis of Paths on a Riemannian Manifold. Math. Surveys and Monographs, volume 4, American Math. Soc (2000).
  • [30] Sturm, K.Th.: Analysis on local Dirichelet spaces I. Recurrence, conservativeness and Liouville properties. J. Reine Angew. Math 456, 173-196 (1994).
  • [31] Takeda, M.: On a martingale method for symmetric diffusion processes and its applications. Osaka J. Math. 26, 650-623 (1989).
  • [32] Varopoulos, N.Th.: Potential theory and diffusion of Riemannian manifolds. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, vols. I, II, in:Wadsworth Math. Ser., Wadsworth, Belmont, CA, 821–837 (1983).
There are 32 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Antonio W. Cunha This is me

Eudes L. De Lima

Henrique F. De Lima This is me

Early Pub Date April 6, 2024
Publication Date April 23, 2024
Submission Date November 10, 2023
Acceptance Date February 15, 2024
Published in Issue Year 2024 Volume: 17 Issue: 1

Cite

APA Cunha, A. W., De Lima, E. L., & De Lima, H. F. (2024). Revisiting Gradient Bach Solitons via Maximum Principles. International Electronic Journal of Geometry, 17(1), 207-2012. https://doi.org/10.36890/iejg.1466314
AMA Cunha AW, De Lima EL, De Lima HF. Revisiting Gradient Bach Solitons via Maximum Principles. Int. Electron. J. Geom. April 2024;17(1):207-2012. doi:10.36890/iejg.1466314
Chicago Cunha, Antonio W., Eudes L. De Lima, and Henrique F. De Lima. “Revisiting Gradient Bach Solitons via Maximum Principles”. International Electronic Journal of Geometry 17, no. 1 (April 2024): 207-2012. https://doi.org/10.36890/iejg.1466314.
EndNote Cunha AW, De Lima EL, De Lima HF (April 1, 2024) Revisiting Gradient Bach Solitons via Maximum Principles. International Electronic Journal of Geometry 17 1 207–2012.
IEEE A. W. Cunha, E. L. De Lima, and H. F. De Lima, “Revisiting Gradient Bach Solitons via Maximum Principles”, Int. Electron. J. Geom., vol. 17, no. 1, pp. 207–2012, 2024, doi: 10.36890/iejg.1466314.
ISNAD Cunha, Antonio W. et al. “Revisiting Gradient Bach Solitons via Maximum Principles”. International Electronic Journal of Geometry 17/1 (April 2024), 207-2012. https://doi.org/10.36890/iejg.1466314.
JAMA Cunha AW, De Lima EL, De Lima HF. Revisiting Gradient Bach Solitons via Maximum Principles. Int. Electron. J. Geom. 2024;17:207–2012.
MLA Cunha, Antonio W. et al. “Revisiting Gradient Bach Solitons via Maximum Principles”. International Electronic Journal of Geometry, vol. 17, no. 1, 2024, pp. 207-2012, doi:10.36890/iejg.1466314.
Vancouver Cunha AW, De Lima EL, De Lima HF. Revisiting Gradient Bach Solitons via Maximum Principles. Int. Electron. J. Geom. 2024;17(1):207-2012.