[1] Abedi, H., Kashani, S. M. B.: Cohomogeneity one Riemannian manifolds of constant positive curvature. Journal of the Korean Math. Soci. 44,
799-807 (2007). https://doi.org/10.1016/j.difgeo.2007.06.006
[2] Ahmadi, P., Kashani, S. M. B.: Cohomogeneity one Anti De Sitter space H3
1 . Bulletin of the Irannian Math. Soc. 35, 221-233 (2009).
[3] Ahmadi, P.: Cohomogeneity one Lorentzian space forms: Minkowski, de Sitter and anti de Sitter spaces. Lap Lambert Academic Publishing (2011).
[4] Alekseevsky, D. V.: Homogeneous Lorentzian manifolds of a semisimple group. Journal of Geomerty and Physics. 62, 631-645 (2012).
https://doi.org/10.48550/arxiv.1101.3093
[5] Bredon, G. E.: Introdution to compact transformation groups. Acad. Press. New york, London (1972).
[6] Berndt, J., Bruk, M.: Cohomogeneity one actions on hyperbolic spaces. Journal fur die Reine und Angewandte Mathematik. 209-235 (2001).
https://doi.org/10.1515/crll.2001.093
[7] Brendt, J., Console, S., Olmos, C.: Submanifolds and holonomy, Chapman and Hall/CRS. London, New york (2003).
[9] Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Amer. Math. Soc. 228, 125-137 (1985).
[10] Diaz-Ramos, J. C., Kashani, S. M. B., Vanaei, M. J.: Cohomogeneity one actions on anti de Sitter spacetimes. Preprint arxiv:1609.05644[math.DG].
https://doi.org/10.48550/arXiv.1609.05644
[12] Kobayashi, S.: Homogeneous Riemannian manifolds of negative curuature. Tohoku Math. J. 14, 413-415 (1962).
https://doi.org/10.2748/tmj/1178244077
[13] Kollros, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354, 571-612 (2002).
[14] Mirzaie, R.: Topological properties of some flat Lorentzian manifolds of low cohomogeneity. Hiroshima Math. J. 44, 267-274 (2014).
https://doi.org/10.32917/hmj/1419619747
[15] Mirzaie, R.: Orbit space of cohomogeneity two flat Riemannian manifolds. Balkan Journal of Geometry and Its Applications. 2, 25-33 (2018).
[16] Mostert, P.: On a compact Lie group action on manifolds. Ann. Math. 65, 447-455 (1957).
[17] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. New York (1983).
[18] Patrangenaru, V.: Lorentzian manifolds with the three largest degrees of symmetry. Geometria Dedicata. 102, 25-33 (2003).
https://doi.org/10.1023/b:geom.0000006588.95481.1c
[19] Podesta, F., Spiro, A.: Some topological properties of cohomogeneity one manifolds with negative curvature. Ann. Glob. Anal. Geom. 14, 69-79
(1966). https://doi.org/10.1007/bf00128196
[21] Searle, C.: Cohomogeneity and positive curvature in low dimensions. Math. Z. 214, 491-498 (1993).
[22] Scala, A. J. Di., Olmos, C.: The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237, 199-209 (2001).
https://doi.org/10.1007/PL00004860
[23] Szeghy, D.: Isometric actions of compact connected Lie groups on globally hyperbolic Lorentz manifolds. Publ. Math. Debrecen. 71, 229-243 (2007).
https://doi.org/10.5486/pmd.2007.3730
[1] Abedi, H., Kashani, S. M. B.: Cohomogeneity one Riemannian manifolds of constant positive curvature. Journal of the Korean Math. Soci. 44,
799-807 (2007). https://doi.org/10.1016/j.difgeo.2007.06.006
[2] Ahmadi, P., Kashani, S. M. B.: Cohomogeneity one Anti De Sitter space H3
1 . Bulletin of the Irannian Math. Soc. 35, 221-233 (2009).
[3] Ahmadi, P.: Cohomogeneity one Lorentzian space forms: Minkowski, de Sitter and anti de Sitter spaces. Lap Lambert Academic Publishing (2011).
[4] Alekseevsky, D. V.: Homogeneous Lorentzian manifolds of a semisimple group. Journal of Geomerty and Physics. 62, 631-645 (2012).
https://doi.org/10.48550/arxiv.1101.3093
[5] Bredon, G. E.: Introdution to compact transformation groups. Acad. Press. New york, London (1972).
[6] Berndt, J., Bruk, M.: Cohomogeneity one actions on hyperbolic spaces. Journal fur die Reine und Angewandte Mathematik. 209-235 (2001).
https://doi.org/10.1515/crll.2001.093
[7] Brendt, J., Console, S., Olmos, C.: Submanifolds and holonomy, Chapman and Hall/CRS. London, New york (2003).
[9] Dadok, J.: Polar coordinates induced by actions of compact Lie groups. Trans. Amer. Math. Soc. 228, 125-137 (1985).
[10] Diaz-Ramos, J. C., Kashani, S. M. B., Vanaei, M. J.: Cohomogeneity one actions on anti de Sitter spacetimes. Preprint arxiv:1609.05644[math.DG].
https://doi.org/10.48550/arXiv.1609.05644
[12] Kobayashi, S.: Homogeneous Riemannian manifolds of negative curuature. Tohoku Math. J. 14, 413-415 (1962).
https://doi.org/10.2748/tmj/1178244077
[13] Kollros, A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Amer. Math. Soc. 354, 571-612 (2002).
[14] Mirzaie, R.: Topological properties of some flat Lorentzian manifolds of low cohomogeneity. Hiroshima Math. J. 44, 267-274 (2014).
https://doi.org/10.32917/hmj/1419619747
[15] Mirzaie, R.: Orbit space of cohomogeneity two flat Riemannian manifolds. Balkan Journal of Geometry and Its Applications. 2, 25-33 (2018).
[16] Mostert, P.: On a compact Lie group action on manifolds. Ann. Math. 65, 447-455 (1957).
[17] O’Neill, B.: Semi-Riemannian geometry with applications to relativity. Academic Press. New York (1983).
[18] Patrangenaru, V.: Lorentzian manifolds with the three largest degrees of symmetry. Geometria Dedicata. 102, 25-33 (2003).
https://doi.org/10.1023/b:geom.0000006588.95481.1c
[19] Podesta, F., Spiro, A.: Some topological properties of cohomogeneity one manifolds with negative curvature. Ann. Glob. Anal. Geom. 14, 69-79
(1966). https://doi.org/10.1007/bf00128196
[21] Searle, C.: Cohomogeneity and positive curvature in low dimensions. Math. Z. 214, 491-498 (1993).
[22] Scala, A. J. Di., Olmos, C.: The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237, 199-209 (2001).
https://doi.org/10.1007/PL00004860
[23] Szeghy, D.: Isometric actions of compact connected Lie groups on globally hyperbolic Lorentz manifolds. Publ. Math. Debrecen. 71, 229-243 (2007).
https://doi.org/10.5486/pmd.2007.3730
Mirzaie, R., & Ebrahimi, J. (2024). Lorentzian G-manifolds of Constant Positive Curvature. International Electronic Journal of Geometry, 17(2), 551-558. https://doi.org/10.36890/iejg.1405824
AMA
Mirzaie R, Ebrahimi J. Lorentzian G-manifolds of Constant Positive Curvature. Int. Electron. J. Geom. October 2024;17(2):551-558. doi:10.36890/iejg.1405824
Chicago
Mirzaie, Reza, and Jafar Ebrahimi. “Lorentzian G-Manifolds of Constant Positive Curvature”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 551-58. https://doi.org/10.36890/iejg.1405824.
EndNote
Mirzaie R, Ebrahimi J (October 1, 2024) Lorentzian G-manifolds of Constant Positive Curvature. International Electronic Journal of Geometry 17 2 551–558.
IEEE
R. Mirzaie and J. Ebrahimi, “Lorentzian G-manifolds of Constant Positive Curvature”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 551–558, 2024, doi: 10.36890/iejg.1405824.
ISNAD
Mirzaie, Reza - Ebrahimi, Jafar. “Lorentzian G-Manifolds of Constant Positive Curvature”. International Electronic Journal of Geometry 17/2 (October 2024), 551-558. https://doi.org/10.36890/iejg.1405824.
JAMA
Mirzaie R, Ebrahimi J. Lorentzian G-manifolds of Constant Positive Curvature. Int. Electron. J. Geom. 2024;17:551–558.
MLA
Mirzaie, Reza and Jafar Ebrahimi. “Lorentzian G-Manifolds of Constant Positive Curvature”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 551-8, doi:10.36890/iejg.1405824.
Vancouver
Mirzaie R, Ebrahimi J. Lorentzian G-manifolds of Constant Positive Curvature. Int. Electron. J. Geom. 2024;17(2):551-8.