Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 2, 496 - 506, 27.10.2024
https://doi.org/10.36890/iejg.1472479

Abstract

References

  • [1] Bayour, B., Beldjilali, G.: Ricci solitons on 3-dimensional C12-Manifolds. Balkan J. Geo. and Its. Appl., 27 No.2, 26-36 (2022).
  • [2] Bayour, B., Beldjilali, G., Sinacer, M. A.: Almost contact metric manifolds with certain condition. Annals of Global Analysis and Geometry. 64, 12 (2023), doi.org/10.1007/s10455-023-09917-w.
  • [3] Beldjilali, G.: 3-dimensional C12-Manifolds. Revista Uni. Mat. Argentina, 67 No.1, 1-14 (2024). doi.org/10.33044/revuma.3088.
  • [4] Beldjilali, G.: Slant curves on 3-dimensional C12-Manifolds. Balkan J. of Geo. and Its App., 27 No.2, 13-25 (2022).
  • [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, (2002) Birhauser, Boston.
  • [6] Bouzir, H., Beldjilali, G., Bayour, B.: On Three Dimensional C12-Manifolds. Mediterr. J. Math., 18, 239 (2021). doi.org/10.1007/s00009-021- 01921-3.
  • [7] De, U. C., Tripathi, M. M.: Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J., 43, 247-255 (2003).
  • [8] Ghosh, A.: Sharma, R.: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys., 75, 1-6 (2014).
  • [9] Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton Chaos, Solitons and Fractals, 44, 647-650 (2011).
  • [10] Hamilton, R. S.: The Ricci flow on surfaces, Mathematics and general relativity. 71, 237-262 (1998).
  • [11] Nagaraja, H. G.: Premalatha, C. R.: Ricci solitons in Kenmotsu manifold. Journal of Mathematical Analysis, 3(2),18-24 (2012).
  • [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Pol. Math. XLVII, 41-50 (1986).
  • [13] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
  • [14] Pigola, S., Rigoli, M., Rimoldi, M., Setti, A. G.: Ricci Almost Solitons Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 5 Vol. X , 757-79 (2011).
  • [15] Sharma, R.: Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom., 89 no.1, 138-147 (2008).
  • [16] Tripathi, M. M.: Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [mathDG], (2008).
  • [17] Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Math., World Sci, Vol 3 (1984).

From Ricci Soliton to Almost Contact Metric Structures

Year 2024, Volume: 17 Issue: 2, 496 - 506, 27.10.2024
https://doi.org/10.36890/iejg.1472479

Abstract

In this paper, we construct almost contact metric structures on a three-dimensional Riemannian manifold equipped with an almost Ricci soliton. Then, we give the techniques necessary to define the nature of such structures. Concrete examples are given.

Supporting Institution

No

References

  • [1] Bayour, B., Beldjilali, G.: Ricci solitons on 3-dimensional C12-Manifolds. Balkan J. Geo. and Its. Appl., 27 No.2, 26-36 (2022).
  • [2] Bayour, B., Beldjilali, G., Sinacer, M. A.: Almost contact metric manifolds with certain condition. Annals of Global Analysis and Geometry. 64, 12 (2023), doi.org/10.1007/s10455-023-09917-w.
  • [3] Beldjilali, G.: 3-dimensional C12-Manifolds. Revista Uni. Mat. Argentina, 67 No.1, 1-14 (2024). doi.org/10.33044/revuma.3088.
  • [4] Beldjilali, G.: Slant curves on 3-dimensional C12-Manifolds. Balkan J. of Geo. and Its App., 27 No.2, 13-25 (2022).
  • [5] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics Vol. 203, (2002) Birhauser, Boston.
  • [6] Bouzir, H., Beldjilali, G., Bayour, B.: On Three Dimensional C12-Manifolds. Mediterr. J. Math., 18, 239 (2021). doi.org/10.1007/s00009-021- 01921-3.
  • [7] De, U. C., Tripathi, M. M.: Tensor in 3-dimensional Trans-Sasakian Manifolds. Kyungpook Math. J., 43, 247-255 (2003).
  • [8] Ghosh, A.: Sharma, R.: Sasakian metric as a Ricci soliton and related results. J. Geom. Phys., 75, 1-6 (2014).
  • [9] Ghosh, A.: Kenmotsu 3-metric as a Ricci soliton Chaos, Solitons and Fractals, 44, 647-650 (2011).
  • [10] Hamilton, R. S.: The Ricci flow on surfaces, Mathematics and general relativity. 71, 237-262 (1998).
  • [11] Nagaraja, H. G.: Premalatha, C. R.: Ricci solitons in Kenmotsu manifold. Journal of Mathematical Analysis, 3(2),18-24 (2012).
  • [12] Olszak, Z.: Normal almost contact manifolds of dimension three. Annales Pol. Math. XLVII, 41-50 (1986).
  • [13] Oubina, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen, 32, 187-193 (1985).
  • [14] Pigola, S., Rigoli, M., Rimoldi, M., Setti, A. G.: Ricci Almost Solitons Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 5 Vol. X , 757-79 (2011).
  • [15] Sharma, R.: Certain results on K-contact and (κ, μ)-contact manifolds. J. Geom., 89 no.1, 138-147 (2008).
  • [16] Tripathi, M. M.: Ricci solitons in contact metric manifolds, arXiv:0801, 4222v1, [mathDG], (2008).
  • [17] Yano, K., Kon, M.: Structures on Manifolds, Series in Pure Math., World Sci, Vol 3 (1984).
There are 17 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Beldjilali Gherici 0000-0002-8933-1548

Early Pub Date September 20, 2024
Publication Date October 27, 2024
Submission Date April 23, 2024
Acceptance Date August 28, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Gherici, B. (2024). From Ricci Soliton to Almost Contact Metric Structures. International Electronic Journal of Geometry, 17(2), 496-506. https://doi.org/10.36890/iejg.1472479
AMA Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. October 2024;17(2):496-506. doi:10.36890/iejg.1472479
Chicago Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 496-506. https://doi.org/10.36890/iejg.1472479.
EndNote Gherici B (October 1, 2024) From Ricci Soliton to Almost Contact Metric Structures. International Electronic Journal of Geometry 17 2 496–506.
IEEE B. Gherici, “From Ricci Soliton to Almost Contact Metric Structures”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 496–506, 2024, doi: 10.36890/iejg.1472479.
ISNAD Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry 17/2 (October 2024), 496-506. https://doi.org/10.36890/iejg.1472479.
JAMA Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. 2024;17:496–506.
MLA Gherici, Beldjilali. “From Ricci Soliton to Almost Contact Metric Structures”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 496-0, doi:10.36890/iejg.1472479.
Vancouver Gherici B. From Ricci Soliton to Almost Contact Metric Structures. Int. Electron. J. Geom. 2024;17(2):496-50.