Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 2, 466 - 495
https://doi.org/10.36890/iejg.1486767

Abstract

References

  • [1] Araki, S.: On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1–34.
  • [2] Baba, K., Ikawa, O., Sasaki, A.: A duality between non-compact semisimple symmetric pairs and commutative compact semisimple symmetric triads and its general theory, Diff. Geom. and its Applications 76 (2021), 101751.
  • [3] Baba, K., Ikawa, O., Sasaki, A.: An alternative proof for Berger’s classification of semisimple pseudo-Riemannian symmetric pairs from the view point of compact symmetric triads, in preparation.
  • [4] Bourbaki, N.: Groupes et algebres de Lie, Hermann, Paris, 1978.
  • [5] Geortsches, O., Thorbergsson, G.: On the geometry of orbits of Hermann actions, Geom. Dedicata, 129 (2007), 101–118.
  • [6] Heintze, E., Palais, R. S., Terng, C., Thobergsson, G.: Hyperpolar actions on symmetric spaces, Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, (1995), 214–245.
  • [7] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.
  • [8] Hermann, R.: Totally geodesic orbits of groups of isometries, Nederl. Akad. Wetensch. Proc. Ser. A 65 (1962), 291–298.
  • [9] Ikawa, O.: The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan, 63, (2011), 79–136.
  • [10] Ikawa, O.: The geometry of orbits of Hermann type actions, Contemporary Perspectives in Differential Geometry and its Related Fields, (2018), 67–78.
  • [11] Ikawa, O., Tanaka, M. S., Tasaki, H.: The fixed point set of a holomorphic isometry, the intersection of two real forms in a Hermitian symmetric space of compact type and symmetric triads, Journal of Int. J. Math., 26 (2015).
  • [12] Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram, Geom. Dedicata, 138 (2009), 25–50.
  • [13] Knapp, A. W.: Lie groups beyond an introduction second edition, Birkhauser, 2002.
  • [14] Kollross, A.: A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc., 354, (2001), 571–612.
  • [15] Matsuki, T.: Double Coset Decompositions of Reductive Lie Groups Arising from Two Involutions, J. Algebra, 197 (1997), 49–91.
  • [16] Matsuki, T.: Classification of two involutions on semisimple compact Lie groups and root systems, J. Lie Theory, 12 (2002), 41–68.
  • [17] Ohnita, Y.: On classification of minimal orbits of the Hermann action satisfying Koike’s conditions (Joint work with Minoru Yoshida), Proceedings of The 21st International Workshop on Hermitian Symmetric Spaces and Submanifolds, 21 (2017), 1–15.
  • [18] Ohno, S.: A sufficient condition for orbits of Hermann actions to be weakly reflective, Tokyo J. Math. 39 (2016), 537–563.
  • [19] Ohno, S.: Geometric Properties of Orbits of Hermann actions, accepted to Tokyo J. Math.
  • [20] Ohno, S., Sakai, T., Urakawa, H.: Biharmonic homogeneous submanifolds in compact symmetric spaces and compact Lie groups, Hiroshima Math. J., 49 (2019), 47–115.
  • [21] Oshima, T., Sekiguchi, J.: The Restricted Root System of a Semisimple Symmetric Pair, Advanced studies in Pure Mathematics 4 (1984), 433–487.
  • [22] Satake, I.: On representations and compactifications of symmetric Riemannian spaces, Ann. of Math., 71 (1960), 77–110.
  • [23] Sugiura, M.: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11, (1959), 374–434. Correction to my paper: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 23, (1971), 379–383.
  • [24] Warner, G.: Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972.

Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads

Year 2024, Volume: 17 Issue: 2, 466 - 495
https://doi.org/10.36890/iejg.1486767

Abstract

In this paper, we first introduce the notion of double Satake diagrams for compact symmetric triads. In terms of this notion, we give an alternative proof for the classification theorem for compact symmetric triads, which was originally given by Toshihiko Matsuki. Secondly, we introduce the notion of canonical forms for compact symmetric triads, and prove the existence of canonical forms for compact simple symmetric triads. We also give some properties for canonical forms.

Thanks

The second author was partially supported by JSPS KAKENHI Grant Number 22K03285.

References

  • [1] Araki, S.: On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1–34.
  • [2] Baba, K., Ikawa, O., Sasaki, A.: A duality between non-compact semisimple symmetric pairs and commutative compact semisimple symmetric triads and its general theory, Diff. Geom. and its Applications 76 (2021), 101751.
  • [3] Baba, K., Ikawa, O., Sasaki, A.: An alternative proof for Berger’s classification of semisimple pseudo-Riemannian symmetric pairs from the view point of compact symmetric triads, in preparation.
  • [4] Bourbaki, N.: Groupes et algebres de Lie, Hermann, Paris, 1978.
  • [5] Geortsches, O., Thorbergsson, G.: On the geometry of orbits of Hermann actions, Geom. Dedicata, 129 (2007), 101–118.
  • [6] Heintze, E., Palais, R. S., Terng, C., Thobergsson, G.: Hyperpolar actions on symmetric spaces, Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, (1995), 214–245.
  • [7] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, Academic Press, 1978.
  • [8] Hermann, R.: Totally geodesic orbits of groups of isometries, Nederl. Akad. Wetensch. Proc. Ser. A 65 (1962), 291–298.
  • [9] Ikawa, O.: The geometry of symmetric triad and orbit spaces of Hermann actions, J. Math. Soc. Japan, 63, (2011), 79–136.
  • [10] Ikawa, O.: The geometry of orbits of Hermann type actions, Contemporary Perspectives in Differential Geometry and its Related Fields, (2018), 67–78.
  • [11] Ikawa, O., Tanaka, M. S., Tasaki, H.: The fixed point set of a holomorphic isometry, the intersection of two real forms in a Hermitian symmetric space of compact type and symmetric triads, Journal of Int. J. Math., 26 (2015).
  • [12] Klein, S.: Reconstructing the geometric structure of a Riemannian symmetric space from its Satake diagram, Geom. Dedicata, 138 (2009), 25–50.
  • [13] Knapp, A. W.: Lie groups beyond an introduction second edition, Birkhauser, 2002.
  • [14] Kollross, A.: A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc., 354, (2001), 571–612.
  • [15] Matsuki, T.: Double Coset Decompositions of Reductive Lie Groups Arising from Two Involutions, J. Algebra, 197 (1997), 49–91.
  • [16] Matsuki, T.: Classification of two involutions on semisimple compact Lie groups and root systems, J. Lie Theory, 12 (2002), 41–68.
  • [17] Ohnita, Y.: On classification of minimal orbits of the Hermann action satisfying Koike’s conditions (Joint work with Minoru Yoshida), Proceedings of The 21st International Workshop on Hermitian Symmetric Spaces and Submanifolds, 21 (2017), 1–15.
  • [18] Ohno, S.: A sufficient condition for orbits of Hermann actions to be weakly reflective, Tokyo J. Math. 39 (2016), 537–563.
  • [19] Ohno, S.: Geometric Properties of Orbits of Hermann actions, accepted to Tokyo J. Math.
  • [20] Ohno, S., Sakai, T., Urakawa, H.: Biharmonic homogeneous submanifolds in compact symmetric spaces and compact Lie groups, Hiroshima Math. J., 49 (2019), 47–115.
  • [21] Oshima, T., Sekiguchi, J.: The Restricted Root System of a Semisimple Symmetric Pair, Advanced studies in Pure Mathematics 4 (1984), 433–487.
  • [22] Satake, I.: On representations and compactifications of symmetric Riemannian spaces, Ann. of Math., 71 (1960), 77–110.
  • [23] Sugiura, M.: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11, (1959), 374–434. Correction to my paper: Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 23, (1971), 379–383.
  • [24] Warner, G.: Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972.
There are 24 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Kurando Baba 0009-0002-7436-0407

Osamu Ikawa This is me 0009-0004-3975-1917

Early Pub Date September 20, 2024
Publication Date
Submission Date June 19, 2024
Acceptance Date September 14, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Baba, K., & Ikawa, O. (2024). Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads. International Electronic Journal of Geometry, 17(2), 466-495. https://doi.org/10.36890/iejg.1486767
AMA Baba K, Ikawa O. Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads. Int. Electron. J. Geom. September 2024;17(2):466-495. doi:10.36890/iejg.1486767
Chicago Baba, Kurando, and Osamu Ikawa. “Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads”. International Electronic Journal of Geometry 17, no. 2 (September 2024): 466-95. https://doi.org/10.36890/iejg.1486767.
EndNote Baba K, Ikawa O (September 1, 2024) Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads. International Electronic Journal of Geometry 17 2 466–495.
IEEE K. Baba and O. Ikawa, “Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 466–495, 2024, doi: 10.36890/iejg.1486767.
ISNAD Baba, Kurando - Ikawa, Osamu. “Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads”. International Electronic Journal of Geometry 17/2 (September 2024), 466-495. https://doi.org/10.36890/iejg.1486767.
JAMA Baba K, Ikawa O. Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads. Int. Electron. J. Geom. 2024;17:466–495.
MLA Baba, Kurando and Osamu Ikawa. “Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 466-95, doi:10.36890/iejg.1486767.
Vancouver Baba K, Ikawa O. Double Satake Diagrams and Canonical Forms in Compact Symmetric Triads. Int. Electron. J. Geom. 2024;17(2):466-95.