Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 208 - 229
https://doi.org/10.36890/iejg.1672080

Abstract

References

  • Altunbaş, M.: Metallic Riemannian structures on the tangent bundles of Riemannian manifolds with g-natural metrics. Int. Electron. J. Geom. 16(1), 95–103 (2023) https://doi.org/10.36890/iejg.1145729.
  • Amari, S.: Differential-geometrical methods in statistics. Lecture notes in statistics. vol. 28. Springer-Verlag, New York (1985).
  • Bejan, C. L., Crasmareanu, M.: Conjugate connections with respect to a quadratic endomorphism and duality. Filomat. 30(9), 2367–2374 (2016). https://doi.org/10.2298/FIL1609367B
  • Blaga, A. M., Nannicini, A.: On the geometry of metallic pseudo-Riemannian structures. Riv. Math. Univ. Parma (N.S.). 11(1), 69–87 (2020).
  • Blaga, A. M., Nannicini, A.: On curvature tensors of Norden and metallic pseudo-Riemannian manifolds. Complex Manifolds. 6(1), 150–159 (2019). https://doi.org/10.1515/coma-2019-0008
  • Calin, O., Matsuzoe, H., Zhang, J.: Generalizations of conjugate connections. World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ, 26–34 (2009).
  • Durmaz, O., Gezer, A.: Conjugate connections and their applications on pure metallic metric geometries. Ricerche Mat. (2023). https://doi.org/10.1007/s11587-023-00782-0
  • Erkan, E., Takano, K., Gulbahar, M.: Locally product-like statistical manifolds and their hypersurfaces. Int. Electron. J. Geom. 16(2), 435-450 (2023). HTTPS://DOI.ORG/10.36890/IEJG.1307467
  • Erken, I. K., Murathan, C. C., Yazla, A.: Almost cosympletic statistical manifolds. Quaest. Math. 43(2), 265-282 (2020). https://doi.org/10.2989/16073606.2019.1576069
  • Fei, T., Zhang, J.: Interaction of Codazzi couplings with (para-)Kähler geometry. Results Math. 72(4), 2037–2056 (2017). https://doi.org/10.1007/s00025-017-0711-7
  • Gezer, A., Karaman, C.: On metallic Riemannian structures. Turkish J. Math. 39(6), 954–962 (2015). https://doi.org/10.3906/mat-1504-50
  • Hretcanu, C. E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Rev. Un. Mat. Argentina. 54(2), 15–27 (2013).
  • S. Lauritzen, Statistical manifolds. In: Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen, S., Rao, C.R. (eds.) Differential Geometry in Statistical Inference, IMS Lecture Notes, vol. 10, pp. 163–216. Institute of Mathematical Statistics, Hayward (1987).
  • Manea, A.: Metallic-like structures and metallic-like maps. Turkish J. Math. 47(5), 1539–1549 (2023). https://doi.org/10.55730/1300-0098.3446
  • H. Nagaoka, S. Amari, Differential geometry of smooth families of probability distributions, Technical Report (METR) 82–7, Dept. of Math. Eng. and Instr., Univ. of Tokyo (1982).
  • Norden, A.P.: Affinely connected spaces GRMFL. Moscow (1976) (in Russian).
  • Nomizu, K., Simon, U.: Notes on conjugate connections. World Scientific Publishing Co. Inc. River Edge. NJ. 152–173 (1992).
  • Stepanov, S. E., Stepanova, E. S., Shandra, I. G.: Conjugate connections on statistical manifolds. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 90–98 (2007). https://doi.org/10.3103/S1066369X07100052
  • Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85 (1-2), 171-187 (2006). https://doi.org/10.1007/s00022-006-0052-2
  • Takano, K.: Statistical manifolds with almost complex structures. Tensor, New Ser. 72(3), 225-231 (2010).
  • Vanzura, J.: Integrability conditions for polynomial structures. Kodai Math. Sem. Rep. 27 (1–2), 42–50 (1976). https://doi.org/10.2996/kmj/1138847161
  • Vilcu, A.D., Vilcu, G.E.: Statistical manifolds with almost quaternionic structures and quaternionic Kähler-like statistical submersions. Entropy. 17(9), 6213-6228 (2015). https://doi.org/10.3390/e17096213
  • Vilcu, G.E.: Almost product structures on statistical manifolds and para-Kähler like statistical submersions. Bull. Sci. Math. 171, Paper No. 103018, 21 pp (2021). https://doi.org/10.1016/j.bulsci.2021.103018

Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds

Year 2025, Volume: 18 Issue: 2, 208 - 229
https://doi.org/10.36890/iejg.1672080

Abstract

In this paper, we explore the characteristics of metallic-like pseudo-Riemannian manifolds that employ various linear connections. We establish a series of relationships regarding these connections, specifically examining the links between distinct types and their counterparts. Our findings reveal that a particular type of connection is associated with another if and only if its counterpart exhibits a corresponding relationship, and vice versa. Furthermore, we present significant equalities pertaining to the intrinsic properties of the manifolds, illustrating how these characteristics interact within a metallic-like context. We discuss the conditions required for a particular type of coupling, revealing significant connections between the properties of different associated connections. Additionally, we derive crucial equivalences that emphasise the relationship between torsion, statistical structures, and Codazzi coupling across various connections. Collectively, our results offer a cohesive framework that clarifies the geometric and algebraic foundations of metallic-like pseudo-Riemannian manifolds, enhancing our understanding of their structure and properties.

References

  • Altunbaş, M.: Metallic Riemannian structures on the tangent bundles of Riemannian manifolds with g-natural metrics. Int. Electron. J. Geom. 16(1), 95–103 (2023) https://doi.org/10.36890/iejg.1145729.
  • Amari, S.: Differential-geometrical methods in statistics. Lecture notes in statistics. vol. 28. Springer-Verlag, New York (1985).
  • Bejan, C. L., Crasmareanu, M.: Conjugate connections with respect to a quadratic endomorphism and duality. Filomat. 30(9), 2367–2374 (2016). https://doi.org/10.2298/FIL1609367B
  • Blaga, A. M., Nannicini, A.: On the geometry of metallic pseudo-Riemannian structures. Riv. Math. Univ. Parma (N.S.). 11(1), 69–87 (2020).
  • Blaga, A. M., Nannicini, A.: On curvature tensors of Norden and metallic pseudo-Riemannian manifolds. Complex Manifolds. 6(1), 150–159 (2019). https://doi.org/10.1515/coma-2019-0008
  • Calin, O., Matsuzoe, H., Zhang, J.: Generalizations of conjugate connections. World Scientific Publishing Co. Pte. Ltd. Hackensack, NJ, 26–34 (2009).
  • Durmaz, O., Gezer, A.: Conjugate connections and their applications on pure metallic metric geometries. Ricerche Mat. (2023). https://doi.org/10.1007/s11587-023-00782-0
  • Erkan, E., Takano, K., Gulbahar, M.: Locally product-like statistical manifolds and their hypersurfaces. Int. Electron. J. Geom. 16(2), 435-450 (2023). HTTPS://DOI.ORG/10.36890/IEJG.1307467
  • Erken, I. K., Murathan, C. C., Yazla, A.: Almost cosympletic statistical manifolds. Quaest. Math. 43(2), 265-282 (2020). https://doi.org/10.2989/16073606.2019.1576069
  • Fei, T., Zhang, J.: Interaction of Codazzi couplings with (para-)Kähler geometry. Results Math. 72(4), 2037–2056 (2017). https://doi.org/10.1007/s00025-017-0711-7
  • Gezer, A., Karaman, C.: On metallic Riemannian structures. Turkish J. Math. 39(6), 954–962 (2015). https://doi.org/10.3906/mat-1504-50
  • Hretcanu, C. E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Rev. Un. Mat. Argentina. 54(2), 15–27 (2013).
  • S. Lauritzen, Statistical manifolds. In: Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen, S., Rao, C.R. (eds.) Differential Geometry in Statistical Inference, IMS Lecture Notes, vol. 10, pp. 163–216. Institute of Mathematical Statistics, Hayward (1987).
  • Manea, A.: Metallic-like structures and metallic-like maps. Turkish J. Math. 47(5), 1539–1549 (2023). https://doi.org/10.55730/1300-0098.3446
  • H. Nagaoka, S. Amari, Differential geometry of smooth families of probability distributions, Technical Report (METR) 82–7, Dept. of Math. Eng. and Instr., Univ. of Tokyo (1982).
  • Norden, A.P.: Affinely connected spaces GRMFL. Moscow (1976) (in Russian).
  • Nomizu, K., Simon, U.: Notes on conjugate connections. World Scientific Publishing Co. Inc. River Edge. NJ. 152–173 (1992).
  • Stepanov, S. E., Stepanova, E. S., Shandra, I. G.: Conjugate connections on statistical manifolds. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 90–98 (2007). https://doi.org/10.3103/S1066369X07100052
  • Takano, K.: Statistical manifolds with almost contact structures and its statistical submersions. J. Geom. 85 (1-2), 171-187 (2006). https://doi.org/10.1007/s00022-006-0052-2
  • Takano, K.: Statistical manifolds with almost complex structures. Tensor, New Ser. 72(3), 225-231 (2010).
  • Vanzura, J.: Integrability conditions for polynomial structures. Kodai Math. Sem. Rep. 27 (1–2), 42–50 (1976). https://doi.org/10.2996/kmj/1138847161
  • Vilcu, A.D., Vilcu, G.E.: Statistical manifolds with almost quaternionic structures and quaternionic Kähler-like statistical submersions. Entropy. 17(9), 6213-6228 (2015). https://doi.org/10.3390/e17096213
  • Vilcu, G.E.: Almost product structures on statistical manifolds and para-Kähler like statistical submersions. Bull. Sci. Math. 171, Paper No. 103018, 21 pp (2021). https://doi.org/10.1016/j.bulsci.2021.103018
There are 23 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Buşra Aktaş 0000-0002-1285-7250

Aydın Gezer 0000-0001-7505-0385

Olgun Durmaz 0000-0002-0913-3307

Early Pub Date October 13, 2025
Publication Date October 14, 2025
Submission Date April 8, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Aktaş, B., Gezer, A., & Durmaz, O. (2025). Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds. International Electronic Journal of Geometry, 18(2), 208-229. https://doi.org/10.36890/iejg.1672080
AMA Aktaş B, Gezer A, Durmaz O. Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds. Int. Electron. J. Geom. October 2025;18(2):208-229. doi:10.36890/iejg.1672080
Chicago Aktaş, Buşra, Aydın Gezer, and Olgun Durmaz. “Investigating the Interplay of Codazzi Couplings and Connections in Metallic-Like Pseudo-Riemannian Manifolds”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 208-29. https://doi.org/10.36890/iejg.1672080.
EndNote Aktaş B, Gezer A, Durmaz O (October 1, 2025) Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds. International Electronic Journal of Geometry 18 2 208–229.
IEEE B. Aktaş, A. Gezer, and O. Durmaz, “Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 208–229, 2025, doi: 10.36890/iejg.1672080.
ISNAD Aktaş, Buşra et al. “Investigating the Interplay of Codazzi Couplings and Connections in Metallic-Like Pseudo-Riemannian Manifolds”. International Electronic Journal of Geometry 18/2 (October2025), 208-229. https://doi.org/10.36890/iejg.1672080.
JAMA Aktaş B, Gezer A, Durmaz O. Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds. Int. Electron. J. Geom. 2025;18:208–229.
MLA Aktaş, Buşra et al. “Investigating the Interplay of Codazzi Couplings and Connections in Metallic-Like Pseudo-Riemannian Manifolds”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 208-29, doi:10.36890/iejg.1672080.
Vancouver Aktaş B, Gezer A, Durmaz O. Investigating the Interplay of Codazzi Couplings and Connections in Metallic-like Pseudo-Riemannian Manifolds. Int. Electron. J. Geom. 2025;18(2):208-29.