Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 2, 335 - 348

Abstract

References

  • Ali, A.T., López, R.: Slant helices in Minkowski space $E^3_1$ . J. Korean Math. Soc. 48(1), 159–167 (2011).
  • Ali, A.T.: New special curves and their spherical indicatrices. Glob. J. Adv. Res. Class. Mod. Geom. 1(2), 28–38 (2012).
  • Barros, M.: General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503–1509 (1997).
  • Barros, M., Ferrández, A., Lucas, P., Meroaño, M.A.: General helices in the 3-dimensional Lorentzian space forms. Rocky Mt. J. Math. 31(2), 373–388 (2001).
  • Crasmareanu, M.: The flow-curvature of spacelike parametrized curves in the Lorentz plane. Proc. Int. Geom. Cent. 15(2), 101–109 (2022).
  • Crasmareanu, M.: The flow-curvature of plane parametrized curves. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 72(2), 1–11 (2023).
  • Crasmareanu, M.: The flow-geodesic curvature and the flow-evolute of hyperbolic plane curves. Int. Electron. J. Geom. 16(2), 225–231 (2023).
  • Crasmareanu, M.: The flow-curvature of curves in a geometric surface. Commun. Korean Math. Soc. 38(4), 1261–1269 (2023).
  • Çiftçi, Ü.: A generalization of Lancert’s theorem. J. Geom. Phys. 59(12), 1597–1603 (2009).
  • Ekmekci, N., Okuyucu, O.Z., Yaylı, Y.: Characterization of speherical helices in Euclidean 3-space. Analele Stiint. ale Univ. Ovidius Constanta 22(2), 99–108 (2014).
  • Ferrández, A., Giménez, A., Lucas, P.: Null generalized helices in Lorentz-Minkowski spaces. J. Phys. A Math. Gen. 36(39), 8243–8251 (2002).
  • Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28(2), 153–163 (2004).
  • Kula, L., Yaylı, Y.: On slant helix and its spherical indicatrix. Appl. Math. Comput. 169(1), 600–607 (2005).
  • Kula, L., Ekmekci, N., Yaylı, Y., ˙Ilarslan K.: Characterizations of slant helices in Euclidean 3-space. Turk. J. Math. 34, 261–273 (2010).
  • Lancret, M.: Mémoire sur les courbes á double courbure. Mémoires présentés á l’Institut1. 416–454 (1806).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices in the Euclidean 3-space revisited. Bull. Belg. Math. Soc. - Simon Stevin 23(1), 133–150 (2016).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices in the three-dimensional sphere. J. Korean Math. Soc. 54(4), 1331–1343 (2017).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices: a new approximation. Turk. J. Math. 43(1), 473–485 (2019).
  • Okuyucu, O.Z, Gök, İ., Yaylı, Y., Ekmekci, N.: Slant helices in three dimensional Lie groups. Appl. Math. Comput. 221, 672–683 (2013).
  • Scofield, P.D.: Curves of constant precession. Am. Math. Mon. 102(6), 531–537 (1995).
  • Struik, D.J.:Lectures on classical differential geometry. Dover Publications, Inc., New York (1988).
  • Yampolsky, A., Opariy, A.: Generalized helices in three-dimensional Lie groups. Turk. J. Math. 43, 1447–1455 (2019).

Generalized Helices in the Euclidean 3-space Through Flow-frame

Year 2025, Volume: 18 Issue: 2, 335 - 348

Abstract

A representation of time-dependent rotation of a usual Frenet flow is called flow-frame; the angle of rotation is exactly the current parameter. In this paper, we investigate three types of helices in the Euclidean 3-space through flow-frame and give their geometrical description with flow-frame apparatus. Then we introduce the spherical images of a curve by translating flow-frame vectors to the center of unit sphere in the Euclidean 3-space R3. Besides, we examine the relations between a generalized helix and its spherical images.

Supporting Institution

TÜBİTAK (The Scientific and Technological Research Council of Turkey)

References

  • Ali, A.T., López, R.: Slant helices in Minkowski space $E^3_1$ . J. Korean Math. Soc. 48(1), 159–167 (2011).
  • Ali, A.T.: New special curves and their spherical indicatrices. Glob. J. Adv. Res. Class. Mod. Geom. 1(2), 28–38 (2012).
  • Barros, M.: General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503–1509 (1997).
  • Barros, M., Ferrández, A., Lucas, P., Meroaño, M.A.: General helices in the 3-dimensional Lorentzian space forms. Rocky Mt. J. Math. 31(2), 373–388 (2001).
  • Crasmareanu, M.: The flow-curvature of spacelike parametrized curves in the Lorentz plane. Proc. Int. Geom. Cent. 15(2), 101–109 (2022).
  • Crasmareanu, M.: The flow-curvature of plane parametrized curves. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 72(2), 1–11 (2023).
  • Crasmareanu, M.: The flow-geodesic curvature and the flow-evolute of hyperbolic plane curves. Int. Electron. J. Geom. 16(2), 225–231 (2023).
  • Crasmareanu, M.: The flow-curvature of curves in a geometric surface. Commun. Korean Math. Soc. 38(4), 1261–1269 (2023).
  • Çiftçi, Ü.: A generalization of Lancert’s theorem. J. Geom. Phys. 59(12), 1597–1603 (2009).
  • Ekmekci, N., Okuyucu, O.Z., Yaylı, Y.: Characterization of speherical helices in Euclidean 3-space. Analele Stiint. ale Univ. Ovidius Constanta 22(2), 99–108 (2014).
  • Ferrández, A., Giménez, A., Lucas, P.: Null generalized helices in Lorentz-Minkowski spaces. J. Phys. A Math. Gen. 36(39), 8243–8251 (2002).
  • Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28(2), 153–163 (2004).
  • Kula, L., Yaylı, Y.: On slant helix and its spherical indicatrix. Appl. Math. Comput. 169(1), 600–607 (2005).
  • Kula, L., Ekmekci, N., Yaylı, Y., ˙Ilarslan K.: Characterizations of slant helices in Euclidean 3-space. Turk. J. Math. 34, 261–273 (2010).
  • Lancret, M.: Mémoire sur les courbes á double courbure. Mémoires présentés á l’Institut1. 416–454 (1806).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices in the Euclidean 3-space revisited. Bull. Belg. Math. Soc. - Simon Stevin 23(1), 133–150 (2016).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices in the three-dimensional sphere. J. Korean Math. Soc. 54(4), 1331–1343 (2017).
  • Lucas, P., Ortega-Yagües, J.A.: Slant helices: a new approximation. Turk. J. Math. 43(1), 473–485 (2019).
  • Okuyucu, O.Z, Gök, İ., Yaylı, Y., Ekmekci, N.: Slant helices in three dimensional Lie groups. Appl. Math. Comput. 221, 672–683 (2013).
  • Scofield, P.D.: Curves of constant precession. Am. Math. Mon. 102(6), 531–537 (1995).
  • Struik, D.J.:Lectures on classical differential geometry. Dover Publications, Inc., New York (1988).
  • Yampolsky, A., Opariy, A.: Generalized helices in three-dimensional Lie groups. Turk. J. Math. 43, 1447–1455 (2019).
There are 22 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Cansu Özyurt Anar 0000-0001-6720-2975

Yusuf Yaylı 0000-0003-4398-3855

Nejat Ekmekçi 0000-0003-1246-2395

Early Pub Date October 13, 2025
Publication Date October 15, 2025
Submission Date May 4, 2025
Acceptance Date June 15, 2025
Published in Issue Year 2025 Volume: 18 Issue: 2

Cite

APA Özyurt Anar, C., Yaylı, Y., & Ekmekçi, N. (2025). Generalized Helices in the Euclidean 3-space Through Flow-frame. International Electronic Journal of Geometry, 18(2), 335-348.
AMA Özyurt Anar C, Yaylı Y, Ekmekçi N. Generalized Helices in the Euclidean 3-space Through Flow-frame. Int. Electron. J. Geom. October 2025;18(2):335-348.
Chicago Özyurt Anar, Cansu, Yusuf Yaylı, and Nejat Ekmekçi. “Generalized Helices in the Euclidean 3-Space Through Flow-Frame”. International Electronic Journal of Geometry 18, no. 2 (October 2025): 335-48.
EndNote Özyurt Anar C, Yaylı Y, Ekmekçi N (October 1, 2025) Generalized Helices in the Euclidean 3-space Through Flow-frame. International Electronic Journal of Geometry 18 2 335–348.
IEEE C. Özyurt Anar, Y. Yaylı, and N. Ekmekçi, “Generalized Helices in the Euclidean 3-space Through Flow-frame”, Int. Electron. J. Geom., vol. 18, no. 2, pp. 335–348, 2025.
ISNAD Özyurt Anar, Cansu et al. “Generalized Helices in the Euclidean 3-Space Through Flow-Frame”. International Electronic Journal of Geometry 18/2 (October2025), 335-348.
JAMA Özyurt Anar C, Yaylı Y, Ekmekçi N. Generalized Helices in the Euclidean 3-space Through Flow-frame. Int. Electron. J. Geom. 2025;18:335–348.
MLA Özyurt Anar, Cansu et al. “Generalized Helices in the Euclidean 3-Space Through Flow-Frame”. International Electronic Journal of Geometry, vol. 18, no. 2, 2025, pp. 335-48.
Vancouver Özyurt Anar C, Yaylı Y, Ekmekçi N. Generalized Helices in the Euclidean 3-space Through Flow-frame. Int. Electron. J. Geom. 2025;18(2):335-48.