Research Article
BibTex RIS Cite

A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED

Year 2022, Issue: 45, 424 - 436, 25.01.2022
https://doi.org/10.32003/igge.990382

Abstract

Afforestation is an indispensable practice for the sustainability of forests in the absence of sufficient forest. Planting tree species compatible with local environmental factors will contribute to the strengthening and protection of forests. This study aims to develop a statistical model to determine the optimal growing areas of tree species compatible with local environmental factors using GIS. While creating this model, nine main environmental factors (lithology, landform, elevation, slope, aspect, temperature, precipitation, soil type, soil depth) that affect the distribution of tree species were determined. These factors were analyzed along with their sub-criteria. Analyzes were done using the AHP method. According to the analysis results, the distribution of tree species in the study area is affected by temperature, precipitation, elevation, slope, landform, and soil depth. The optimal growth areas of each tree species are quite different from each other. The results show that this method is easy to apply in forest planning and offers forest decision support systems opportunities to create a wide variety of alternative plans.

References

  • Adams, J. (2009). Vegetation-climate interaction: How plants make the global environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00881-8.
  • Atalay, I. (2006). Soil formation, its classification and geography. Meta Edition. Printing, Izmir.
  • Austin, M. P. (2005). Vegetation and environment: Discontinuities and continuities. In Vegetation Ecology (eds E. van der Maarel and J. Franklin). https://doi.org/10.1002/9781118452592.ch3
  • Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: An integrated approach. Kluwer Academic Publishers, Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1495-4
  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.
  • Cardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., Balvanera, P., O’connor, M. I., & Gonzalez, A. (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98(3), 572–592. https://doi.org/10.3732/ajb.1000364
  • Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95(3), 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x
  • Barrio, G., Alvera, B., Puigdefabregas, J., & Diez, C. (1997). Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology, 12(2), 95-115. https://doi.org/10.1007/BF02698210
  • FAO, (2011). Food and agriculture organization of United Nations; state of World’s forest [FAO Report]. Rome: FAO 978-92-5-106750-5
  • Federici, S., Tubiello, F. N., Salvatore, M., Jacobs, H., & Schmidhuber, J. (2015). New estimates of CO2 forest emissions and removals: 1990-2015. Forest Ecology and Management, 89-98. https://doi.org/10.1016/j.foreco.2015.04.022.
  • Ferreira, J., Lennox, G. D., Gardner, T. A., Thomson, J. R., Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E., Ferraz, S. F., & Louzada, J. (2018). Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 8(8), 744–749. https://doi.org/10.1038/s4155 8-018-0225-7
  • Fick, S. E., & Hicmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(2), 4302-4315. https://doi.org/10.1002/joc.5086
  • Florinsky, I. V., & Kuryakova, G. A. (1996). Influence of topography on some vegetation cover properties. Catena, 27(2), 123-141. https://doi.org/10.1016/0341-8162(96)00005-7
  • Forrester, D. I., Bauhus, J. (2016). A review of processes behind diversity—productivity relationships in forests. Current Forestry Reports, 2(1), 45-61. https://doi.org/10.1007/s40725-016-0031-2
  • Frank, T. D. (1988). Mapping dominant vegetation communities in the Colorado Rocky Mountain Front Range with Landsat Thematic Mapper and digital terrain data. Photogrammetric Engineering and Remote Sensing, 50(12), 1727–1734.
  • Greve, M., Lykke, A. M., Blach-Overgaard, A., & Svenning, J.-C. (2011). Environmental and anthropogenic determinants of vegetation distribution across Africa. Global Ecology and Biogeography, 20(5), 661-674. https://doi.org/. https://doi.org/10.1111/j.1466-8238.2011.00666.x.
  • Guo, Q., & Ren, H. (2014). Productivity as related to diversity and age in planted versus natural forests. Global Ecology and Biogeography, 23(12), 1461-1471. https://doi.org/10.1111/geb.12238
  • Guo, Y., Wang, B., Mallik, A. U., Huang, F., Xiang, W., Ding, T., Wen, S., Lu, S., Li, D., & He, Y. (2017). Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 10(3), 450-460. https://doi.org/10.1093/jpe/rtw057
  • Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1111/j.1365-2745.2001.00615.x
  • Hautier, Y., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hillebrand, H., Lind, E. M., MacDougall, A. S.,
  • Stevens, C. J., & Bakker, J. D. (2014). Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508(7497), 521-525. https://doi.org/10.1038/nature13014
  • Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., & De Luca, E. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574-577. https://doi.org/10.1038/natur e15374
  • Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O., & Coomes, D. A. (2016). Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104(2), 388-398. https://doi.org/10.1111/1365-2745.12522
  • Jucker, T., Bouriaud, O., Avacaritei, D., & Coomes, D. A. (2014). Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecology Letters, 17(12), 1560-1569. https://doi.org/10.1111/ele.12382
  • Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., & Coomes, D. A. (2014). Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. Journal of Ecology, 102(5), 1202-1213. https://doi.org/10.1111/1365-2745.12276
  • Kalajnxhiu, A., Tsiripidis, I., & Bergmeier, E. (2012). The diversity of woodland vegetation in Central Albania along an altitudinal gradient of 1300 m. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology, 146(4), 954–969. https://doi.org/10.1080/11263504.2011.634446
  • Kanagaraj, R., Wiegand, T., Comita, L. S., & Huth, A. (2011). Tropical tree species assemblages in topographical habitats change in time and with life stage. Journal of Ecology, 99(6), 1441-1452. https://doi.org/10.1111/j.1365-2745.2011.01878.x
  • Laamrani, A., Valeria, O., Bergeron, Y., Fenton, N., Cheng, L. Z., & Anyomi, K. (2014). Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian Clay Belt region. Forest Ecology and Management, 330, 144-157. https://doi.org/10.1016/j.foreco.2014.07.013
  • Liu, X., Zhang, W., Zhang, B., Yang, Q., Chang, J., & Hou, K. (2016). Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China. Atmospheric Environment, 125, 283-292. https://doi.org/10.1016/j.atmosenv.2015.11.034
  • MAF, (2014). Ministry of Agriculture and Forestry of Turkey; Kahramanmaras tree inventory maps [Map]. Republic of Turkey Ministry of Agriculture and Forestry, retrieved from https://www.tarimorman.gov.tr/Sayfalar/EN/AnaSayfa.aspx
  • Mazzochini, G. G., Fonseca, C. R., Costa, G. C., Santos, R. M., Oliveira-Filho, A. T., & Ganade, G. (2019). Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Global Ecology and Biogeography, 28(10), 1430-1439. https://doi.org/10.1111/geb.12963
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
  • Morales-Hidalgo, D., Oswalt, S. N., & Somanathan, E. (2015). Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecology and Management, 352(352), 68-77. https://doi.org/10.1016/j.foreco.2015.06.011
  • MRE, (2010). General Directorate of Mineral Research and Exploration of Turkey; 1 / 100 000 scaled geology maps. Ankara.
  • Naeem, S., Duffy, J. E., & Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. Science,336(6087), 1401-1406. https://doi.org/10.1126/science.1215855
  • Nilsson, H., Nordström, E.-M., & Öhman, K. (2016). Decision support for participatory forest planning using AHP and TOPSIS. Forests, 7(5), 100. https://doi.org/10.3390/f7050100
  • Nüchela, J., Bøchera.; P. K., & Svenninga, J. C. (2019). Topographic slope steepness and anthropogenic pressure interact to shape the distribution of tree cover in China. Applied Geography, 103(3), 40-55. https://doi.org/doi.org/10.1016/ j.apgeog.2018.12.008
  • Ohsawa, T., Saito, Y., Sawada, H., & Ide, Y. (2008). Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(3), 187-196. https://doi.org/10.1016/j.flora.2007.02.007
  • Ouyang, S., Xiang, W., Gou, M., Chen, L., Lei, P., Xiao, W., Deng, X., Zeng, L., Li, J., Zhang, T., Peng, C., & Forrester, D. I. (2021). Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions. Global Ecology and Biogeography, 30(2), 500-513. https://doi.org/10.1111/geb.13235
  • Paquette, A., & Messier, C. (2011). The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20(1), 170-180. https://doi.org/10.1111/j.1466-8238.2010.00592.x
  • Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., & Zeng, H. (2014). Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111(8), 2915-2919. https://doi.org/10.1073/pnas.1315126111
  • Poorter, L., Sande, M. T. van der, Arets, E. J. M. M., Ascarrunz, N., Enquist, B. J., Finegan, B., Licona, J. C., Martínez-Ramos, M., Mazzei, L., Meave, J. A., Muñoz, R., Nytch, C. J., Oliveira, A. A. de, Pérez-García, E. A., Prado-Junior, J.,
  • Rodríguez-Velázques, J., Ruschel, A. R., Salgado-Negret, B., Schiavini, I., Swenson, N. G., Tenorio, E. A., Thompson, J., Toledo, M., Uriarte, M.,Hout, P. van der, Zimmerman, J. K., Pena-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26(12), 1423–1434. https://doi.org/10.1111/geb.12668
  • Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., & Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295. https://doi.org/10.1038/nature12350
  • Saaty, T. L. (1980a). The analytic hierarchy process. McGraw-Hill International Book Co., New York; London.
  • Saaty, T. L. (1980b). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International Book Co., New York; London. http://www.worldcat.org/search? qt=worldcat_org_all&q=0070543712
  • Sebastia, M.-T. (2004). Role of topography and soils in grassland structuring at the landscape and community scales. Basic and Applied Ecology, 5(4), 331-346. https://doi.org/10.1016/j.baae.2003.10.001
  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229-232. https://doi.org/10.1038/nature16986
  • Tsui, C.-C., Tsai, C.-C., & Chen, Z.-S. (2013). Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma, 209-210(4), 119-127. https://doi.org/10.1016/j.geoderma.2013.06.013
  • UN, (1992). Non-legally binding authoritative statement of principles for a global consensus on the management, conservation and sustainable development of all types of forests, United Nations: New York, retrieved from http://www.undocuments.net/for-prin.htm
  • Worldclim (2020). Climate data retrieved from: https://www.worldclim.org/data/index.html
  • Vie, J.-C., Hilton Taylor, C., & Stuart, S. N. (2009). Wildlife in a changing world: An analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland. https://doi.org/10.2305/IUCN.CH.2009.17.en.
  • Wang, B., Zhang, G., & Duan, J. (2015). Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. International Soil and Water Conservation Research, 3(4), 291-304. https://doi.org/10.1016/j.iswcr.2015.10.002
  • Wenhua, L. (2004). Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 201(1), 33–41. https://doi.org/10.1016/j.foreco.2004.06.010
  • Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs, 26(1), 1–80. https://doi.org/10.2307/1943577

A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED

Year 2022, Issue: 45, 424 - 436, 25.01.2022
https://doi.org/10.32003/igge.990382

Abstract

Afforestation is an indispensable practice for the sustainability of forests in the absence of sufficient forest. Planting tree species compatible with local environmental factors will contribute to the strengthening and protection of forests. This study aims to develop a statistical model to determine the optimal growing areas of tree species compatible with local environmental factors using GIS. While creating this model, nine main environmental factors (lithology, landform, elevation, slope, aspect, temperature, precipitation, soil type, soil depth) that affect the distribution of tree species were determined. These factors were analyzed along with their sub-criteria. Analyzes were done using the AHP method. According to the analysis results, the distribution of tree species in the study area is affected by temperature, precipitation, elevation, slope, landform, and soil depth. The optimal growth areas of each tree species are quite different from each other. The results show that this method is easy to apply in forest planning and offers forest decision support systems opportunities to create a wide variety of alternative plans.

References

  • Adams, J. (2009). Vegetation-climate interaction: How plants make the global environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00881-8.
  • Atalay, I. (2006). Soil formation, its classification and geography. Meta Edition. Printing, Izmir.
  • Austin, M. P. (2005). Vegetation and environment: Discontinuities and continuities. In Vegetation Ecology (eds E. van der Maarel and J. Franklin). https://doi.org/10.1002/9781118452592.ch3
  • Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: An integrated approach. Kluwer Academic Publishers, Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1495-4
  • Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.
  • Cardinale, B. J., Matulich, K. L., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., Balvanera, P., O’connor, M. I., & Gonzalez, A. (2011). The functional role of producer diversity in ecosystems. American Journal of Botany, 98(3), 572–592. https://doi.org/10.3732/ajb.1000364
  • Comita, L. S., Condit, R., & Hubbell, S. P. (2007). Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95(3), 482–492. https://doi.org/10.1111/j.1365-2745.2007.01229.x
  • Barrio, G., Alvera, B., Puigdefabregas, J., & Diez, C. (1997). Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology, 12(2), 95-115. https://doi.org/10.1007/BF02698210
  • FAO, (2011). Food and agriculture organization of United Nations; state of World’s forest [FAO Report]. Rome: FAO 978-92-5-106750-5
  • Federici, S., Tubiello, F. N., Salvatore, M., Jacobs, H., & Schmidhuber, J. (2015). New estimates of CO2 forest emissions and removals: 1990-2015. Forest Ecology and Management, 89-98. https://doi.org/10.1016/j.foreco.2015.04.022.
  • Ferreira, J., Lennox, G. D., Gardner, T. A., Thomson, J. R., Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E., Ferraz, S. F., & Louzada, J. (2018). Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 8(8), 744–749. https://doi.org/10.1038/s4155 8-018-0225-7
  • Fick, S. E., & Hicmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(2), 4302-4315. https://doi.org/10.1002/joc.5086
  • Florinsky, I. V., & Kuryakova, G. A. (1996). Influence of topography on some vegetation cover properties. Catena, 27(2), 123-141. https://doi.org/10.1016/0341-8162(96)00005-7
  • Forrester, D. I., Bauhus, J. (2016). A review of processes behind diversity—productivity relationships in forests. Current Forestry Reports, 2(1), 45-61. https://doi.org/10.1007/s40725-016-0031-2
  • Frank, T. D. (1988). Mapping dominant vegetation communities in the Colorado Rocky Mountain Front Range with Landsat Thematic Mapper and digital terrain data. Photogrammetric Engineering and Remote Sensing, 50(12), 1727–1734.
  • Greve, M., Lykke, A. M., Blach-Overgaard, A., & Svenning, J.-C. (2011). Environmental and anthropogenic determinants of vegetation distribution across Africa. Global Ecology and Biogeography, 20(5), 661-674. https://doi.org/. https://doi.org/10.1111/j.1466-8238.2011.00666.x.
  • Guo, Q., & Ren, H. (2014). Productivity as related to diversity and age in planted versus natural forests. Global Ecology and Biogeography, 23(12), 1461-1471. https://doi.org/10.1111/geb.12238
  • Guo, Y., Wang, B., Mallik, A. U., Huang, F., Xiang, W., Ding, T., Wen, S., Lu, S., Li, D., & He, Y. (2017). Topographic species-habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. Journal of Plant Ecology, 10(3), 450-460. https://doi.org/10.1093/jpe/rtw057
  • Harms, K. E., Condit, R., Hubbell, S. P., & Foster, R. B. (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89(6), 947–959. https://doi.org/10.1111/j.1365-2745.2001.00615.x
  • Hautier, Y., Seabloom, E. W., Borer, E. T., Adler, P. B., Harpole, W. S., Hillebrand, H., Lind, E. M., MacDougall, A. S.,
  • Stevens, C. J., & Bakker, J. D. (2014). Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 508(7497), 521-525. https://doi.org/10.1038/nature13014
  • Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., & De Luca, E. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526(7574), 574-577. https://doi.org/10.1038/natur e15374
  • Jucker, T., Avăcăriței, D., Bărnoaiea, I., Duduman, G., Bouriaud, O., & Coomes, D. A. (2016). Climate modulates the effects of tree diversity on forest productivity. Journal of Ecology, 104(2), 388-398. https://doi.org/10.1111/1365-2745.12522
  • Jucker, T., Bouriaud, O., Avacaritei, D., & Coomes, D. A. (2014). Stabilizing effects of diversity on aboveground wood production in forest ecosystems: Linking patterns and processes. Ecology Letters, 17(12), 1560-1569. https://doi.org/10.1111/ele.12382
  • Jucker, T., Bouriaud, O., Avacaritei, D., Dănilă, I., Duduman, G., Valladares, F., & Coomes, D. A. (2014). Competition for light and water play contrasting roles in driving diversity–productivity relationships in Iberian forests. Journal of Ecology, 102(5), 1202-1213. https://doi.org/10.1111/1365-2745.12276
  • Kalajnxhiu, A., Tsiripidis, I., & Bergmeier, E. (2012). The diversity of woodland vegetation in Central Albania along an altitudinal gradient of 1300 m. Plant Biosystems-An International Journal Dealing with All Aspects of Plant Biology, 146(4), 954–969. https://doi.org/10.1080/11263504.2011.634446
  • Kanagaraj, R., Wiegand, T., Comita, L. S., & Huth, A. (2011). Tropical tree species assemblages in topographical habitats change in time and with life stage. Journal of Ecology, 99(6), 1441-1452. https://doi.org/10.1111/j.1365-2745.2011.01878.x
  • Laamrani, A., Valeria, O., Bergeron, Y., Fenton, N., Cheng, L. Z., & Anyomi, K. (2014). Effects of topography and thickness of organic layer on productivity of black spruce boreal forests of the Canadian Clay Belt region. Forest Ecology and Management, 330, 144-157. https://doi.org/10.1016/j.foreco.2014.07.013
  • Liu, X., Zhang, W., Zhang, B., Yang, Q., Chang, J., & Hou, K. (2016). Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China. Atmospheric Environment, 125, 283-292. https://doi.org/10.1016/j.atmosenv.2015.11.034
  • MAF, (2014). Ministry of Agriculture and Forestry of Turkey; Kahramanmaras tree inventory maps [Map]. Republic of Turkey Ministry of Agriculture and Forestry, retrieved from https://www.tarimorman.gov.tr/Sayfalar/EN/AnaSayfa.aspx
  • Mazzochini, G. G., Fonseca, C. R., Costa, G. C., Santos, R. M., Oliveira-Filho, A. T., & Ganade, G. (2019). Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Global Ecology and Biogeography, 28(10), 1430-1439. https://doi.org/10.1111/geb.12963
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3-30. https://doi.org/10.1002/hyp.3360050103
  • Morales-Hidalgo, D., Oswalt, S. N., & Somanathan, E. (2015). Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecology and Management, 352(352), 68-77. https://doi.org/10.1016/j.foreco.2015.06.011
  • MRE, (2010). General Directorate of Mineral Research and Exploration of Turkey; 1 / 100 000 scaled geology maps. Ankara.
  • Naeem, S., Duffy, J. E., & Zavaleta, E. (2012). The functions of biological diversity in an age of extinction. Science,336(6087), 1401-1406. https://doi.org/10.1126/science.1215855
  • Nilsson, H., Nordström, E.-M., & Öhman, K. (2016). Decision support for participatory forest planning using AHP and TOPSIS. Forests, 7(5), 100. https://doi.org/10.3390/f7050100
  • Nüchela, J., Bøchera.; P. K., & Svenninga, J. C. (2019). Topographic slope steepness and anthropogenic pressure interact to shape the distribution of tree cover in China. Applied Geography, 103(3), 40-55. https://doi.org/doi.org/10.1016/ j.apgeog.2018.12.008
  • Ohsawa, T., Saito, Y., Sawada, H., & Ide, Y. (2008). Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(3), 187-196. https://doi.org/10.1016/j.flora.2007.02.007
  • Ouyang, S., Xiang, W., Gou, M., Chen, L., Lei, P., Xiao, W., Deng, X., Zeng, L., Li, J., Zhang, T., Peng, C., & Forrester, D. I. (2021). Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio-economic conditions. Global Ecology and Biogeography, 30(2), 500-513. https://doi.org/10.1111/geb.13235
  • Paquette, A., & Messier, C. (2011). The effect of biodiversity on tree productivity: From temperate to boreal forests. Global Ecology and Biogeography, 20(1), 170-180. https://doi.org/10.1111/j.1466-8238.2010.00592.x
  • Peng, S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., Myneni, R. B., Yin, Y., & Zeng, H. (2014). Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111(8), 2915-2919. https://doi.org/10.1073/pnas.1315126111
  • Poorter, L., Sande, M. T. van der, Arets, E. J. M. M., Ascarrunz, N., Enquist, B. J., Finegan, B., Licona, J. C., Martínez-Ramos, M., Mazzei, L., Meave, J. A., Muñoz, R., Nytch, C. J., Oliveira, A. A. de, Pérez-García, E. A., Prado-Junior, J.,
  • Rodríguez-Velázques, J., Ruschel, A. R., Salgado-Negret, B., Schiavini, I., Swenson, N. G., Tenorio, E. A., Thompson, J., Toledo, M., Uriarte, M.,Hout, P. van der, Zimmerman, J. K., Pena-Claros, M. (2017). Biodiversity and climate determine the functioning of Neotropical forests. Global Ecology and Biogeography, 26(12), 1423–1434. https://doi.org/10.1111/geb.12668
  • Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., & Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500(7462), 287-295. https://doi.org/10.1038/nature12350
  • Saaty, T. L. (1980a). The analytic hierarchy process. McGraw-Hill International Book Co., New York; London.
  • Saaty, T. L. (1980b). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International Book Co., New York; London. http://www.worldcat.org/search? qt=worldcat_org_all&q=0070543712
  • Sebastia, M.-T. (2004). Role of topography and soils in grassland structuring at the landscape and community scales. Basic and Applied Ecology, 5(4), 331-346. https://doi.org/10.1016/j.baae.2003.10.001
  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D., & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531(7593), 229-232. https://doi.org/10.1038/nature16986
  • Tsui, C.-C., Tsai, C.-C., & Chen, Z.-S. (2013). Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma, 209-210(4), 119-127. https://doi.org/10.1016/j.geoderma.2013.06.013
  • UN, (1992). Non-legally binding authoritative statement of principles for a global consensus on the management, conservation and sustainable development of all types of forests, United Nations: New York, retrieved from http://www.undocuments.net/for-prin.htm
  • Worldclim (2020). Climate data retrieved from: https://www.worldclim.org/data/index.html
  • Vie, J.-C., Hilton Taylor, C., & Stuart, S. N. (2009). Wildlife in a changing world: An analysis of the 2008 IUCN Red List of Threatened Species. Gland, Switzerland. https://doi.org/10.2305/IUCN.CH.2009.17.en.
  • Wang, B., Zhang, G., & Duan, J. (2015). Relationship between topography and the distribution of understory vegetation in a Pinus massoniana forest in Southern China. International Soil and Water Conservation Research, 3(4), 291-304. https://doi.org/10.1016/j.iswcr.2015.10.002
  • Wenhua, L. (2004). Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 201(1), 33–41. https://doi.org/10.1016/j.foreco.2004.06.010
  • Whittaker, R. H. (1956). Vegetation of the Great Smoky Mountains. Ecological Monographs, 26(1), 1–80. https://doi.org/10.2307/1943577
There are 55 citations in total.

Details

Primary Language English
Subjects Human Geography
Journal Section RESEARCH ARTICLE
Authors

Fatma Esen 0000-0002-3740-1751

Publication Date January 25, 2022
Published in Issue Year 2022 Issue: 45

Cite

APA Esen, F. (2022). A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED. Lnternational Journal of Geography and Geography Education(45), 424-436. https://doi.org/10.32003/igge.990382
AMA Esen F. A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED. IGGE. January 2022;(45):424-436. doi:10.32003/igge.990382
Chicago Esen, Fatma. “A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED”. Lnternational Journal of Geography and Geography Education, no. 45 (January 2022): 424-36. https://doi.org/10.32003/igge.990382.
EndNote Esen F (January 1, 2022) A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED. lnternational Journal of Geography and Geography Education 45 424–436.
IEEE F. Esen, “A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED”, IGGE, no. 45, pp. 424–436, January 2022, doi: 10.32003/igge.990382.
ISNAD Esen, Fatma. “A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED”. lnternational Journal of Geography and Geography Education 45 (January 2022), 424-436. https://doi.org/10.32003/igge.990382.
JAMA Esen F. A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED. IGGE. 2022;:424–436.
MLA Esen, Fatma. “A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED”. Lnternational Journal of Geography and Geography Education, no. 45, 2022, pp. 424-36, doi:10.32003/igge.990382.
Vancouver Esen F. A NEW MODEL FOR DETERMINING TREE SPECIES COMPATIBLE WITH THE ECOLOGICAL CONDITIONS OF THE AREAS TO BE AFFORESTED. IGGE. 2022(45):424-36.