Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of flood events in the Ayancik Stream Basin (Sinop) in terms of basin morphometry

Yıl 2022, Sayı: 47, 233 - 257, 30.09.2022
https://doi.org/10.32003/igge.1126933

Öz

Flood events are frequently seen in the Ayancık Stream Basin, which is located on the Black Sea coastline. The aim of this study is to evaluate the flood events in the Ayancık Stream Basin depending on the drainage basin morphometry. For this purpose, the flood potential of the basin was tried to be determined by using morphometric indices. The flood potential of each sub-basin was determined and explained by applying 20 different morphometric indices depending on the linear, area and relief morphometry parameters to 24 sub-basins with an area of 0.4-175.3 km2 in the basin. The possible flooding potentials of these sub-basins were tried to be explained by two different methods. Based on morphometric analysis and principal component analysis (PCA), the priority order of the sub-basins was evaluated in 3 classes as high, medium and low priority. According to the morphometric analysis result: 11 sub-basins have high priority, 7 sub-basins have medium priority, and 6 sub-basins have low priority. According to principal component analysis, 6 sub-basins have high priority, 11 sub-basins have medium priority, and 7 sub-basins have low priority. However, when the similar results of both methods were evaluated, it was determined that there were 6 sub-basins with high priority, 5 sub-basins with medium priority, and 4 sub-basins with low priority. As a result of the evaluation of the sub-basins in the Ayancık Stream Basin depending on the basin morphometry, it has been seen that the drainage, geometric and topographic features of the sub-basins play an important role in understanding the flood probabilities.

Kaynakça

  • Abdelkarim, A., Al-Alola, S. S., Alogayell, H. M., Mohamed, S. A., Alkadi, I. I., & Youssef, I. Y. (2020). Mapping of GIS-flood hazard using the geomorphometric-hazard model: Case study of the al-shamal train pathway in the city of Qurayyat, Kingdom of Saudi Arabia. Geosciences, 10(9), 333. https://doi.org/10.3390/geosciences10090333
  • Abdelkarim, A., Gaber, A. F. D., Youssef, A. M., & Pradhan, B. (2019). Flood hazard assessment of the urban area of Tabuk City, Kingdom of Saudi Arabia by integrating spatial-based hydrologic and hydrodynamic modeling. Sensors, 19(5), 1024. https://doi.org/10.3390/s19051024
  • Abdeta, G. C., Tesemma, A. B., Tura, A. L., & Atlabachew, G. H. (2020). Morphometric analysis for prioritizing sub- watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Applied Water Science, 10(7), 1–15. https://doi.org/10.1007/s13201-020-01239-7
  • Abdul Rahaman, S. A., Ajeez, S. A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system–A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia, 4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172
  • Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511, 850–860. https://doi.org/10.1016/j.jhydrol.2014.02.028
  • Alaghmand, S., Abdullah, R. B., Abustan, I., & Vosoogh, B. (2010). GIS-based river flood hazard mapping in urban area (a case study in Kayu Ara River Basin, Malaysia). International Journal of Engineering and Technology, 2(6), 488–500.
  • Altıparmak, S., & Türkoğlu, N. (2018). Yakacık Çayı Havzasının morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 58(1), 353–374.
  • Arango, M. I., Aristizábal, E., & Gómez, F. (2021). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105(1), 983–1012. https://doi.org/10.1007/s11069-020-04346-5
  • Avcı, V., & Sunkar, M. (2015). Giresun’da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91–119.
  • Aydin, O., & Raja, N. B. (2020). Spatial-temporal analysis of precipitation characteristics in Artvin, Turkey. Theoretical and Applied Climatology, 142(1), 729–741. https://doi.org/10.1007/s00704-020-03346-6
  • Baltacı, H. (2018). 18 Temmuz 2017 tarihinde İstanbul’da meydana gelen sel olayının meteorolojik analizi. Marmara Fen Bilimleri Dergisi, 30(1), 55–60. https://doi.org/10.7240/marufbd.397544
  • Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78(2), 1–17. https://doi.org/10.1007/s12665-019- 8046-1.
  • Bodur, A. (2018). Sel ve İstanbul: Sel riskine karşı yapılan dere ıslah çalışmaları ile ilgili bir değerlendirme. Resilience, 2(1), 57–68. https://doi.org/10.32569/resilience.413867
  • Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. International Journal of Geomatics and Geosciences, 2(1), 311.
  • Chorley, R. J. (1969). Introduction to Fluvial Processes. https://doi.org/10.4324/9780429273315
  • Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P. T. T., & Khoi, D. N. (2019). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1), 106. https://doi.org/10.3390/rs12010106
  • Cürebal, İ. (2004). Madra Çayı Havzasının hidrografik özelliklerine sayısal yaklaşım. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(11), 11–24.
  • Cürebal, İ., & Erginal, A. E. (2007). Mıhlı Çayı Havzası’nın jeomorfolojik özelliklerinin jeomorfik indislerle analizi. Elektronik Sosyal Bilimler Dergisi, 6(19), 126–135.
  • Dillon, W. R., & Goldstein, M. (1984). Multivariate analysis: Methods and applications. Wiley, New York, NY.
  • Ergünay, O. (2007). Turkiyenin afet profili. http://www.imo.org.tr/resimler/ekutuphane/pdf/3885.pdf
  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1), 107–111.
  • Eze, E. B., & Efiong, J. (2010). Morphometric parameters of the Calabar River basin: Implication for hydrologic processes. Journal of Geography and Geology, 2(1), 18. https://doi.org/10.5539/jgg.v2n1p18
  • Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 8(1), 113–148. https://doi.org/10.4236/as.2017.81009
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
  • Gebremedhin, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02), 177. https://doi.org/10.4236/jgis.2015.72015
  • Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j.jhydrol.2021.127061
  • Gravelius, H. (1914a). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde Compendium of Hydrology I. Berlin, Germany.
  • Gravelius, H. (1914b). Flusskunde. Goschen verlagshan dlung Berlin. In: Zavoianu, I. (Ed.), Morphometry of Drainage Basins. Elsevier, Amsterdam.
  • Grimaldi, S., Petroselli, A., Tauro, F., & Porfiri, M. (2012). Time of concentration: A paradox in modern hydrology. Hydrological Sciences Journal, 57(2), 217–228.
  • Gülersöyler, S. (2021). Tomruk faciası: Ayancık’ta bir köyde 47 bina yıkıldı. https://www.sozcu.com.tr/2021/gundem/sel-ayancikta-bir-koyu-yok-etti-6592981/
  • Gunjan, P., Mishra, S. K., Lohani, A. K., & Chandniha, S. K. (2020). The Study of morphological characteristics for best management practices over the Rampur Watershed of Mahanadi River Basin using prioritization. Journal of the Indian Society of Remote Sensing, 48(1), 35–45. https://doi.org/10.1007/s12524-019-01061-y
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016- 7606(1945)56[275:EDOSAT]2.0.CO;2
  • IPCC (2014). Summary for policymakers In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ed C B Field et al (Cambridge)(Cambridge University Press) (Cambridge, United Kingdom and New York, NY, USA), 34.
  • Iqbal, M., & Sajjad, H. (2014). Watershed prioritization using morphometric and land use/land cover parameters of Dudhganga Catchment Kashmir Valley India using spatial technology. J Geophys Remote Sens, 3, 115. https://doi.org/10.4172/2169-0049.1000115
  • Islam, A., & Deb Barman, S. (2020). Drainage basin morphometry and evaluating its role on flood-inducing capacity of tributary basins of Mayurakshi River, India. SN Applied Sciences, 2(6), 1–23. https://doi.org/10.1007/s42452-020-2839-4
  • Jain, V., & Sinha, R. (2003). Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Current Science, 85(11), 1596–1600.
  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.
  • Jian, W., Li, S., Lai, C., Wang, Z. ., Cheng, X., Lo, E. Y., & Pan, T. (2021). Evaluating pluvial flood hazard for highly urbanised cities: A case study of the Pearl River Delta Region in China. Natural Hazards, 105(2), 1691–1719. https://doi.org/10.1007/s11069-020-04372-3
  • Joshi, L. M., Kotlia, B. S., & Singh, A. K. (2019). Geomorphic characteristics of landscape development and formation of lakes in the zone of Munsiari Thrust, Garhwal Himalaya, Uttarakhand, India. Quaternary International, 507, 233–248. https://doi.org/10.1016/j.quaint.2018.12.009
  • Jothimani, M., Dawit, Z., & Mulualem, W. (2021). Flood susceptibility modeling of Megech river catchment, lake tana basin, north western Ethiopia, using morphometric analysis. Earth Systems and Environment, 5(2), 353– 364. https://link.springer.com/10.1007/s41748-020-00173-7
  • Kaur, M., Singh, S., Verma, V. K., & Pateriya, B. (2014). Quantitative geomorphological analysis & land use/ land cover change detection of two sub-watersheds in NE region of Punjab, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–8, 371–375. https://doi.org/10.5194/isprsarchives-XL-8-371-2014
  • Kaya, M. (2011). Türkiye’nin ilk sanayi kasabalarından biri Ayancık, Sinop. (Ondokuz Mayıs Üniversitesi Sosyal Bilimler Enstitüsü, Yayınlanmamış Yüksek Lisans Tezi, Samsun).
  • Keller, E. A., & Pinter, N. (1996). Active tectonics (Vol. 338). Prentice Hall Upper Saddle River, NJ.
  • Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362.
  • Kömüşçü, A. Ü., Erkan, A., & Çelik, S. (1998). Analysis of meteorological and terrain features leading to the Izmir flash flood, 3–4 November 1995. Natural Hazards, 18(1), 1–25. https://doi.org/10.1023/A:1008078920113
  • Kostopoulou, E., & Jones, P. D. (2005). Assessment of climate extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics, 89(1), 69–85. https://doi.org/10.1007/s00703-005-0122-2
  • Kumar Rai, P., Narayan Mishra, V., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Mahala, A. (2019). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10(1), 33. https://doi.org/10.1007/s13201-019-1118-2
  • Makwana, J., & Tiwari, M. K. (2016). Prioritization of agricultural sub-watersheds in semi arid middle region of Gujarat using remote sensing and GIS. Environmental Earth Sciences, 75(2), 137. https://doi.org/10.1007/s12665- 015-4935-0
  • Malik, A., Kumar, A., Kushwaha, D. P., Aydin, O., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2019). The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India. Water, 11(6), 1138. https://doi.org/10.3390/w11061138
  • Mather, P. M., & Doornkamp, J. C. (1970). Multivariate analysis in geography with particular reference to drainage-basin morphometry. Transactions of the Institute of British Geographers, 51, 163–187. https://doi.org/10.2307/621768
  • Mayer, L. (1990). Introduction to quantitative geomorphology; an exercise manual. ISBN:9780134882635 Prentice-Hall International, Inc, USA
  • Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology. Columbia Univ New York.
  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA- based approach. Applied Water Science, 7(3), 1505–1519. https://doi.org/10.1007/s13201-015-0332-9
  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area Virginia and Tennessee. Columbia Univ New York.
  • Nandi, A., Mandal, A., Wilson, M., & Smith, D. (2016). Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75(6), 465. https://doi.org/10.1007/s12665-016-5323-0
  • Nooka Ratnam, K., Srivastava, Y. K., Venkateswara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—Remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1), 25. https://doi.org/10.1007/BF02989988
  • Odiji, C. A., Aderoju, O. M., Eta, J. B., Shehu, I., Mai-Bukar, A., & Onuoha, H. (2021). Morphometric analysis and prioritization of upper Benue River watershed, Northern Nigeria. Applied Water Science, 11(2), 41. https://doi.org/10.1007/s13201-021-01364-x
  • Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285–297. https://doi.org/10.1016/j.biocon.2003.12.008
  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
  • Özdemir, H. (2007). Havran çayı havzasının (Balıkesir) CBS ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Basılmamış Doktora Tezi, İÜ Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı, İstanbul).
  • Özdemir, H. (2011). Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları: Sistematik ve bölgesel. D. Ekinci (Ed.), Havza Morfometrisi ve Taşkınlar (507–526). İstanbul: Türk Coğrafya Kurumu Yayınları., 457–474.
  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology, 56(7), 1405–1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özdemi̇r, N. (2005). Sinop ilinde etkili olan bir doğal afet türü: Heyelan. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 5, 67–106.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral and geomorphic areaaltitude analysis. GSA Bulletin, 82(4), 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
  • Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434.
  • Samela, C., Troy, T. J., & Manfreda, S. (2016). Flood Hazard Mapping over Large Regions using Geomorphic Approaches, Advances in Water Resources. EPSC2016-15999.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy New Jersey. GSA Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Singh, G., & Pandey, A. (2021). Flash flood vulnerability assessment and zonation through an integrated approach in the Upper Ganga Basin of the Northwest Himalayan region in Uttarakhand. International Journal of Disaster Risk Reduction, 66, 102573. https://doi.org/10.1016/j.ijdrr.2021.102573
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668. https://doi.org/10.2475/ajs.248.9.655
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
  • Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A., Petrow, T., Pisi, S., & Schröter, K. (2016). Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 21(2).
  • Tucker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage density, and landscape morphology. Water Resources Research, 34(10), 2751–2764. https://doi.org/10.1029/98WR01474
  • Umrikar, B. (2015). GIS techniques in management of watershed developed along the Korkan Coast, Maharashtra, India. Journal of Geographic Information System, 07(03), 280. https://doi.org/10.4236/jgis.2015.73022
  • URL_1. (2021, August 16). İlçemiz Ayancık 1963’teki selden daha kötü durumda. Ayancık Gazetesi. https://www.ayancikgazetesi.com/ilcemiz-ayancik-1963teki-selden-daha-kotu-durumda/56021
  • URL_2. (n.d.). Sel felaketi nedeniyle 40 evin yıkıldığı Babaçay köyünün sakinleri yaşadıklarını anlattı. Retrieved June 2, 2022, from https://www.aa.com.tr/tr/gundem/sel-felaketi-nedeniyle-40-evin-yikildigi-babacay- koyunun-sakinleri-yasadiklarini-anlatti/2334378
  • Utlu, M., & Özdemi̇r, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı Havzası örneği. Coğrafya Dergisi, 36, 49–62.
  • Verstappen, H. T. (1983). Applied geomorphology: Geomorphological surveys for environmental development.
  • Waiyasusri, K., & Chotpantarat, S. (2020). Watershed prioritization of kaeng lawa subwatershed, khon kaen province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water, 12(6), 1570. https://doi.org/10.3390/w12061570
  • Ward, R. C., & Robinson, M. (2000). Soil water. Principles of Hydrology. McGraw-Hill, New York.
  • Welde, K. (2016). Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. International Soil and Water Conservation Research, 4(1), 30–38. https://doi.org/10.1016/j.iswcr.2016.02.006
  • Wentz, E. A. (2000). A shape definition for geographic applications based on edge, elongation, and perforation. Geographical Analysis, 32(2), 95–112. https://doi.org/10.1111/j.1538-4632.2000.tb00419.x
  • WorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/index.html
  • Zeybek, İ. (2014). 22 Mayıs 1998 havza sel-taşkın felaketi. Ondokuz Mayis University Journal of Education Faculty, 11(1), 160–167.

Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi

Yıl 2022, Sayı: 47, 233 - 257, 30.09.2022
https://doi.org/10.32003/igge.1126933

Öz

Karadeniz kıyı şeridinde yer alan Ayancık Çayı Havzası’nda taşkın olayları sıklıkla görülmektedir. Ayancık Çayı Havzası’ndaki taşkın olaylarını drenaj havzası morfometrisine bağlı olarak değerlendirmeyi amaçlayan bu çalışmada, morfometrik indisler kullanarak havzanın taşkın potansiyeli belirlenmeye çalışılmıştır. Bu amaç doğrultusunda havzada alanı 0.4-175.3 km2 arasında değişen 24 alt havzaya çizgisel, alan ve rölyef morfometri parametrelerine bağlı 20 farklı morfometrik indis uygulanarak her bir alt havzanın taşkın potansiyeli tespit edilmiş ve açıklanmıştır. Belirlenen bu alt havzaların, olası taşkın oluşturma potansiyelleri iki farklı yöntem ile açıklanmaya çalışılmıştır. Morfometrik analiz ve temel bileşen analizi (TBA) esas alınarak alt havzaların öncelik sıralaması yüksek, orta ve düşük öncelik olarak 3 sınıfta değerlendirilmiştir. Morfometrik analiz sonucuna göre: 11 adet alt havza yüksek, 7 alt havza orta, 6 alt havza da düşük önceliğe sahiptir. Temel bileşen analizine göre ise 6 alt havza yüksek, 11 alt havza orta, 7 alt havza düşük önceliğe sahiptir. Bununla birlikte her iki yöntemin benzer sonuçları değerlendirildiğinde, yüksek önceliğe sahip 6 alt havza, orta önceliğe sahip 5 alt havza, düşük önceliğe sahip 4 alt havzanın olduğu belirlenmiştir. Ayancık Çayı Havzası’ndaki alt havzaların havza morfometrisine bağlı olarak değerlendirilmesi sonucunda, alt havzaların drenaj, geometrik ve topografik özelliklerinin taşkın olasılıklarının anlaşılmasında önemli rol oynadığı görülmüştür.

Kaynakça

  • Abdelkarim, A., Al-Alola, S. S., Alogayell, H. M., Mohamed, S. A., Alkadi, I. I., & Youssef, I. Y. (2020). Mapping of GIS-flood hazard using the geomorphometric-hazard model: Case study of the al-shamal train pathway in the city of Qurayyat, Kingdom of Saudi Arabia. Geosciences, 10(9), 333. https://doi.org/10.3390/geosciences10090333
  • Abdelkarim, A., Gaber, A. F. D., Youssef, A. M., & Pradhan, B. (2019). Flood hazard assessment of the urban area of Tabuk City, Kingdom of Saudi Arabia by integrating spatial-based hydrologic and hydrodynamic modeling. Sensors, 19(5), 1024. https://doi.org/10.3390/s19051024
  • Abdeta, G. C., Tesemma, A. B., Tura, A. L., & Atlabachew, G. H. (2020). Morphometric analysis for prioritizing sub- watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Applied Water Science, 10(7), 1–15. https://doi.org/10.1007/s13201-020-01239-7
  • Abdul Rahaman, S. A., Ajeez, S. A., Aruchamy, S., & Jegankumar, R. (2015). Prioritization of sub watershed based on morphometric characteristics using fuzzy analytical hierarchy process and geographical information system–A study of Kallar Watershed, Tamil Nadu. Aquatic Procedia, 4, 1322–1330. https://doi.org/10.1016/j.aqpro.2015.02.172
  • Aher, P. D., Adinarayana, J., & Gorantiwar, S. D. (2014). Quantification of morphometric characterization and prioritization for management planning in semi-arid tropics of India: A remote sensing and GIS approach. Journal of Hydrology, 511, 850–860. https://doi.org/10.1016/j.jhydrol.2014.02.028
  • Alaghmand, S., Abdullah, R. B., Abustan, I., & Vosoogh, B. (2010). GIS-based river flood hazard mapping in urban area (a case study in Kayu Ara River Basin, Malaysia). International Journal of Engineering and Technology, 2(6), 488–500.
  • Altıparmak, S., & Türkoğlu, N. (2018). Yakacık Çayı Havzasının morfometrik analizi. Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi, 58(1), 353–374.
  • Arango, M. I., Aristizábal, E., & Gómez, F. (2021). Morphometrical analysis of torrential flows-prone catchments in tropical and mountainous terrain of the Colombian Andes by machine learning techniques. Natural Hazards, 105(1), 983–1012. https://doi.org/10.1007/s11069-020-04346-5
  • Avcı, V., & Sunkar, M. (2015). Giresun’da sel ve taşkın oluşumuna neden olan Aksu Çayı ve Batlama Deresi havzalarının morfometrik analizleri. Coğrafya Dergisi, 30, 91–119.
  • Aydin, O., & Raja, N. B. (2020). Spatial-temporal analysis of precipitation characteristics in Artvin, Turkey. Theoretical and Applied Climatology, 142(1), 729–741. https://doi.org/10.1007/s00704-020-03346-6
  • Baltacı, H. (2018). 18 Temmuz 2017 tarihinde İstanbul’da meydana gelen sel olayının meteorolojik analizi. Marmara Fen Bilimleri Dergisi, 30(1), 55–60. https://doi.org/10.7240/marufbd.397544
  • Bhat, M. S., Alam, A., Ahmad, S., Farooq, H., & Ahmad, B. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78(2), 1–17. https://doi.org/10.1007/s12665-019- 8046-1.
  • Bodur, A. (2018). Sel ve İstanbul: Sel riskine karşı yapılan dere ıslah çalışmaları ile ilgili bir değerlendirme. Resilience, 2(1), 57–68. https://doi.org/10.32569/resilience.413867
  • Chitra, C., Alaguraja, P., Ganeshkumari, K., Yuvaraj, D., & Manivel, M. (2011). Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. International Journal of Geomatics and Geosciences, 2(1), 311.
  • Chorley, R. J. (1969). Introduction to Fluvial Processes. https://doi.org/10.4324/9780429273315
  • Costache, R., Pham, Q. B., Sharifi, E., Linh, N. T. T., Abba, S. I., Vojtek, M., Vojteková, J., Nhi, P. T. T., & Khoi, D. N. (2019). Flash-flood susceptibility assessment using multi-criteria decision making and machine learning supported by remote sensing and GIS techniques. Remote Sensing, 12(1), 106. https://doi.org/10.3390/rs12010106
  • Cürebal, İ. (2004). Madra Çayı Havzasının hidrografik özelliklerine sayısal yaklaşım. Balıkesir Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(11), 11–24.
  • Cürebal, İ., & Erginal, A. E. (2007). Mıhlı Çayı Havzası’nın jeomorfolojik özelliklerinin jeomorfik indislerle analizi. Elektronik Sosyal Bilimler Dergisi, 6(19), 126–135.
  • Dillon, W. R., & Goldstein, M. (1984). Multivariate analysis: Methods and applications. Wiley, New York, NY.
  • Ergünay, O. (2007). Turkiyenin afet profili. http://www.imo.org.tr/resimler/ekutuphane/pdf/3885.pdf
  • Esper Angillieri, M. Y. (2008). Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina. Environmental Geology, 55(1), 107–111.
  • Eze, E. B., & Efiong, J. (2010). Morphometric parameters of the Calabar River basin: Implication for hydrologic processes. Journal of Geography and Geology, 2(1), 18. https://doi.org/10.5539/jgg.v2n1p18
  • Farhan, Y., Anbar, A., Al-Shaikh, N., & Mousa, R. (2017). Prioritization of semi-arid agricultural watershed using morphometric and principal component analysis, remote sensing, and GIS techniques, the Zerqa River Watershed, Northern Jordan. Agricultural Sciences, 8(1), 113–148. https://doi.org/10.4236/as.2017.81009
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
  • Gebremedhin, T., Kibru, T., Tesfaye, S., & Taye, G. (2015). Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. Journal of Geographic Information System, 7(02), 177. https://doi.org/10.4236/jgis.2015.72015
  • Ghasemlounia, R., & Utlu, M. (2021). Flood prioritization of basins based on geomorphometric properties using principal component analysis, morphometric analysis and Redvan’s priority methods: A case study of Harşit River basin. Journal of Hydrology, 603, 127061. https://doi.org/10.1016/j.jhydrol.2021.127061
  • Gravelius, H. (1914a). Grundrifi der gesamten Gewcisserkunde. Band I: Flufikunde Compendium of Hydrology I. Berlin, Germany.
  • Gravelius, H. (1914b). Flusskunde. Goschen verlagshan dlung Berlin. In: Zavoianu, I. (Ed.), Morphometry of Drainage Basins. Elsevier, Amsterdam.
  • Grimaldi, S., Petroselli, A., Tauro, F., & Porfiri, M. (2012). Time of concentration: A paradox in modern hydrology. Hydrological Sciences Journal, 57(2), 217–228.
  • Gülersöyler, S. (2021). Tomruk faciası: Ayancık’ta bir köyde 47 bina yıkıldı. https://www.sozcu.com.tr/2021/gundem/sel-ayancikta-bir-koyu-yok-etti-6592981/
  • Gunjan, P., Mishra, S. K., Lohani, A. K., & Chandniha, S. K. (2020). The Study of morphological characteristics for best management practices over the Rampur Watershed of Mahanadi River Basin using prioritization. Journal of the Indian Society of Remote Sensing, 48(1), 35–45. https://doi.org/10.1007/s12524-019-01061-y
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016- 7606(1945)56[275:EDOSAT]2.0.CO;2
  • IPCC (2014). Summary for policymakers In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ed C B Field et al (Cambridge)(Cambridge University Press) (Cambridge, United Kingdom and New York, NY, USA), 34.
  • Iqbal, M., & Sajjad, H. (2014). Watershed prioritization using morphometric and land use/land cover parameters of Dudhganga Catchment Kashmir Valley India using spatial technology. J Geophys Remote Sens, 3, 115. https://doi.org/10.4172/2169-0049.1000115
  • Islam, A., & Deb Barman, S. (2020). Drainage basin morphometry and evaluating its role on flood-inducing capacity of tributary basins of Mayurakshi River, India. SN Applied Sciences, 2(6), 1–23. https://doi.org/10.1007/s42452-020-2839-4
  • Jain, V., & Sinha, R. (2003). Evaluation of geomorphic control on flood hazard through geomorphic instantaneous unit hydrograph. Current Science, 85(11), 1596–1600.
  • Jenks, G. F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, 186–190.
  • Jian, W., Li, S., Lai, C., Wang, Z. ., Cheng, X., Lo, E. Y., & Pan, T. (2021). Evaluating pluvial flood hazard for highly urbanised cities: A case study of the Pearl River Delta Region in China. Natural Hazards, 105(2), 1691–1719. https://doi.org/10.1007/s11069-020-04372-3
  • Joshi, L. M., Kotlia, B. S., & Singh, A. K. (2019). Geomorphic characteristics of landscape development and formation of lakes in the zone of Munsiari Thrust, Garhwal Himalaya, Uttarakhand, India. Quaternary International, 507, 233–248. https://doi.org/10.1016/j.quaint.2018.12.009
  • Jothimani, M., Dawit, Z., & Mulualem, W. (2021). Flood susceptibility modeling of Megech river catchment, lake tana basin, north western Ethiopia, using morphometric analysis. Earth Systems and Environment, 5(2), 353– 364. https://link.springer.com/10.1007/s41748-020-00173-7
  • Kaur, M., Singh, S., Verma, V. K., & Pateriya, B. (2014). Quantitative geomorphological analysis & land use/ land cover change detection of two sub-watersheds in NE region of Punjab, India. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–8, 371–375. https://doi.org/10.5194/isprsarchives-XL-8-371-2014
  • Kaya, M. (2011). Türkiye’nin ilk sanayi kasabalarından biri Ayancık, Sinop. (Ondokuz Mayıs Üniversitesi Sosyal Bilimler Enstitüsü, Yayınlanmamış Yüksek Lisans Tezi, Samsun).
  • Keller, E. A., & Pinter, N. (1996). Active tectonics (Vol. 338). Prentice Hall Upper Saddle River, NJ.
  • Kirpich, Z. P. (1940). Time of concentration of small agricultural watersheds. Civil Engineering, 10(6), 362.
  • Kömüşçü, A. Ü., Erkan, A., & Çelik, S. (1998). Analysis of meteorological and terrain features leading to the Izmir flash flood, 3–4 November 1995. Natural Hazards, 18(1), 1–25. https://doi.org/10.1023/A:1008078920113
  • Kostopoulou, E., & Jones, P. D. (2005). Assessment of climate extremes in the Eastern Mediterranean. Meteorology and Atmospheric Physics, 89(1), 69–85. https://doi.org/10.1007/s00703-005-0122-2
  • Kumar Rai, P., Narayan Mishra, V., & Mohan, K. (2017). A study of morphometric evaluation of the Son basin, India using geospatial approach. Remote Sensing Applications: Society and Environment, 7, 9–20. https://doi.org/10.1016/j.rsase.2017.05.001
  • Mahala, A. (2019). The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings. Applied Water Science, 10(1), 33. https://doi.org/10.1007/s13201-019-1118-2
  • Makwana, J., & Tiwari, M. K. (2016). Prioritization of agricultural sub-watersheds in semi arid middle region of Gujarat using remote sensing and GIS. Environmental Earth Sciences, 75(2), 137. https://doi.org/10.1007/s12665- 015-4935-0
  • Malik, A., Kumar, A., Kushwaha, D. P., Aydin, O., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2019). The implementation of a hybrid model for hilly sub-watershed prioritization using morphometric variables: Case study in India. Water, 11(6), 1138. https://doi.org/10.3390/w11061138
  • Mather, P. M., & Doornkamp, J. C. (1970). Multivariate analysis in geography with particular reference to drainage-basin morphometry. Transactions of the Institute of British Geographers, 51, 163–187. https://doi.org/10.2307/621768
  • Mayer, L. (1990). Introduction to quantitative geomorphology; an exercise manual. ISBN:9780134882635 Prentice-Hall International, Inc, USA
  • Melton, M. A. (1957). An analysis of the relations among elements of climate, surface properties, and geomorphology. Columbia Univ New York.
  • Meshram, S. G., & Sharma, S. K. (2017). Prioritization of watershed through morphometric parameters: A PCA- based approach. Applied Water Science, 7(3), 1505–1519. https://doi.org/10.1007/s13201-015-0332-9
  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain Area Virginia and Tennessee. Columbia Univ New York.
  • Nandi, A., Mandal, A., Wilson, M., & Smith, D. (2016). Flood hazard mapping in Jamaica using principal component analysis and logistic regression. Environmental Earth Sciences, 75(6), 465. https://doi.org/10.1007/s12665-016-5323-0
  • Nooka Ratnam, K., Srivastava, Y. K., Venkateswara Rao, V., Amminedu, E., & Murthy, K. S. R. (2005). Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis—Remote sensing and GIS perspective. Journal of the Indian Society of Remote Sensing, 33(1), 25. https://doi.org/10.1007/BF02989988
  • Odiji, C. A., Aderoju, O. M., Eta, J. B., Shehu, I., Mai-Bukar, A., & Onuoha, H. (2021). Morphometric analysis and prioritization of upper Benue River watershed, Northern Nigeria. Applied Water Science, 11(2), 41. https://doi.org/10.1007/s13201-021-01364-x
  • Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: Linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285–297. https://doi.org/10.1016/j.biocon.2003.12.008
  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515
  • Özdemir, H. (2007). Havran çayı havzasının (Balıkesir) CBS ve uzaktan algılama yöntemleriyle taşkın ve heyelan risk analizi. (Basılmamış Doktora Tezi, İÜ Sosyal Bilimler Enstitüsü, Coğrafya Anabilim Dalı, İstanbul).
  • Özdemir, H. (2011). Havza morfometrisi ve taşkınlar, fiziki coğrafya araştırmaları: Sistematik ve bölgesel. D. Ekinci (Ed.), Havza Morfometrisi ve Taşkınlar (507–526). İstanbul: Türk Coğrafya Kurumu Yayınları., 457–474.
  • Ozdemir, H., & Bird, D. (2009). Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environmental Geology, 56(7), 1405–1415. https://doi.org/10.1007/s00254-008-1235-y
  • Özdemi̇r, N. (2005). Sinop ilinde etkili olan bir doğal afet türü: Heyelan. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 5, 67–106.
  • Pike, R. J., & Wilson, S. E. (1971). Elevation-relief ratio, hypsometric integral and geomorphic areaaltitude analysis. GSA Bulletin, 82(4), 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
  • Rajasekhar, M., Raju, G. S., & Raju, R. S. (2020). Morphometric analysis of the Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India, using geospatial technologies. Groundwater for Sustainable Development, 11, 100434.
  • Samela, C., Troy, T. J., & Manfreda, S. (2016). Flood Hazard Mapping over Large Regions using Geomorphic Approaches, Advances in Water Resources. EPSC2016-15999.
  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in Badlands at Perth Amboy New Jersey. GSA Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
  • Singh, G., & Pandey, A. (2021). Flash flood vulnerability assessment and zonation through an integrated approach in the Upper Ganga Basin of the Northwest Himalayan region in Uttarakhand. International Journal of Disaster Risk Reduction, 66, 102573. https://doi.org/10.1016/j.ijdrr.2021.102573
  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668. https://doi.org/10.2475/ajs.248.9.655
  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920. https://doi.org/10.1029/TR038i006p00913
  • Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A., Petrow, T., Pisi, S., & Schröter, K. (2016). Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 21(2).
  • Tucker, G. E., & Bras, R. L. (1998). Hillslope processes, drainage density, and landscape morphology. Water Resources Research, 34(10), 2751–2764. https://doi.org/10.1029/98WR01474
  • Umrikar, B. (2015). GIS techniques in management of watershed developed along the Korkan Coast, Maharashtra, India. Journal of Geographic Information System, 07(03), 280. https://doi.org/10.4236/jgis.2015.73022
  • URL_1. (2021, August 16). İlçemiz Ayancık 1963’teki selden daha kötü durumda. Ayancık Gazetesi. https://www.ayancikgazetesi.com/ilcemiz-ayancik-1963teki-selden-daha-kotu-durumda/56021
  • URL_2. (n.d.). Sel felaketi nedeniyle 40 evin yıkıldığı Babaçay köyünün sakinleri yaşadıklarını anlattı. Retrieved June 2, 2022, from https://www.aa.com.tr/tr/gundem/sel-felaketi-nedeniyle-40-evin-yikildigi-babacay- koyunun-sakinleri-yasadiklarini-anlatti/2334378
  • Utlu, M., & Özdemi̇r, H. (2018). Havza morfometrik özelliklerinin taşkın üretmedeki rolü Biga Çayı Havzası örneği. Coğrafya Dergisi, 36, 49–62.
  • Verstappen, H. T. (1983). Applied geomorphology: Geomorphological surveys for environmental development.
  • Waiyasusri, K., & Chotpantarat, S. (2020). Watershed prioritization of kaeng lawa subwatershed, khon kaen province using the morphometric and land-use analysis: A case study of heavy flooding caused by tropical storm podul. Water, 12(6), 1570. https://doi.org/10.3390/w12061570
  • Ward, R. C., & Robinson, M. (2000). Soil water. Principles of Hydrology. McGraw-Hill, New York.
  • Welde, K. (2016). Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia. International Soil and Water Conservation Research, 4(1), 30–38. https://doi.org/10.1016/j.iswcr.2016.02.006
  • Wentz, E. A. (2000). A shape definition for geographic applications based on edge, elongation, and perforation. Geographical Analysis, 32(2), 95–112. https://doi.org/10.1111/j.1538-4632.2000.tb00419.x
  • WorldClim. (2020). Global climate and weather data. https://www.worldclim.org/data/index.html
  • Zeybek, İ. (2014). 22 Mayıs 1998 havza sel-taşkın felaketi. Ondokuz Mayis University Journal of Education Faculty, 11(1), 160–167.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beşeri Coğrafya
Bölüm ARAŞTIRMA MAKALESİ
Yazarlar

Fatma Esen 0000-0002-3740-1751

Yayımlanma Tarihi 30 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 47

Kaynak Göster

APA Esen, F. (2022). Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. Lnternational Journal of Geography and Geography Education(47), 233-257. https://doi.org/10.32003/igge.1126933
AMA Esen F. Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. IGGE. Eylül 2022;(47):233-257. doi:10.32003/igge.1126933
Chicago Esen, Fatma. “Ayancık Çayı Havzası’nda (Sinop) Meydana Gelen taşkın olaylarının Havza Morfometrisi açısından değerlendirilmesi”. Lnternational Journal of Geography and Geography Education, sy. 47 (Eylül 2022): 233-57. https://doi.org/10.32003/igge.1126933.
EndNote Esen F (01 Eylül 2022) Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. lnternational Journal of Geography and Geography Education 47 233–257.
IEEE F. Esen, “Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi”, IGGE, sy. 47, ss. 233–257, Eylül 2022, doi: 10.32003/igge.1126933.
ISNAD Esen, Fatma. “Ayancık Çayı Havzası’nda (Sinop) Meydana Gelen taşkın olaylarının Havza Morfometrisi açısından değerlendirilmesi”. lnternational Journal of Geography and Geography Education 47 (Eylül 2022), 233-257. https://doi.org/10.32003/igge.1126933.
JAMA Esen F. Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. IGGE. 2022;:233–257.
MLA Esen, Fatma. “Ayancık Çayı Havzası’nda (Sinop) Meydana Gelen taşkın olaylarının Havza Morfometrisi açısından değerlendirilmesi”. Lnternational Journal of Geography and Geography Education, sy. 47, 2022, ss. 233-57, doi:10.32003/igge.1126933.
Vancouver Esen F. Ayancık Çayı Havzası’nda (Sinop) meydana gelen taşkın olaylarının havza morfometrisi açısından değerlendirilmesi. IGGE. 2022(47):233-57.