Research Article
BibTex RIS Cite

In-Vitro Microleakage Evaluation of Two Different Nanohybrid Flowable Composites in Deep Class II Cavities

Year 2020, , 326 - 339, 29.12.2020
https://doi.org/10.38079/igusabder.825208

Abstract

Aim: It’s difficult to cope with the microleakage in the cavities prepared below the cementoenamel junction. Therefore the aim of this study is to evaluate the efficiency of the flowable forms of nanofiller composites in deep cavities restored with open sandwich technique proposed for the solution of the stress and marginal seal problems.
Method: Standart MO (mesio-occlusal) box shaped cavities were prepared in 60 teeth. The occlusal-gingival depth of the cavities was prepared 1 mm below the cementoenamel junction and the dimensions of the approximal box is arranged to be 2x4x6 mm in depth. After finishing the restorations, the teeth were randomly selected to form 3 groups (n=20). Group 1 was the control and the cavities were restored with direct composite resin (Filtek Z250). The gingival increment was Supreme XT Flow for Group 2, Grandio Flow for Group 3. The remaining parts of the cavities were restored with the microhybrid composite resin (Filtek Z250) for all groups. All the specimens forming each group were aged by thermo-mechanical loading. The evaluation of microleakage is performed by the determination of the amount of the penetration of basic fuchsin dye under a stereomicroscope (X40) and the data was statistically analyzed. Mann Whitney U Test is used for the assessment of the results. 
Results: Both of the two nanohybrid flowable composites Supreme XT Flow and Grandio Flow did not perform statistically significant superior advantages regarding the microhybrid resin in the control group. (p>0,05). Additionally, no statistically significant result was obtained between the microleakage values of Supreme and Grandio materials. (p>0,05). 
Conclusion: Nanohybrid flowable composite resins could not perform superior properties to reduce microleakage in deep class II cavities compared to that of a microhybrid composite resin.

References

  • Kidd EA. Microleakage in relation to amalgam and composite restorations. A laboratory study. Br. Dent. J. 1976;141:305-310.
  • Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hibrid layer. Oper. Dent. 1995;20:18-25.
  • Bergenholtz G, Cox CF, Loesche WJ, Syed SA. Bacterial leakage around dental restorations: its effects on the dental pulp. J. Oral. Pathol. 1982;11:439-50.
  • Going RE, Massler M, Dute HL. Marginal penetration of dental restorations by different radioactive isotopes. J. Dent. Res. 1960;39:273-84.
  • Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent. Assoc. 2003;134:1382-1390.
  • Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J. Nanotechnol. 2004;1:130-156.
  • Nalçacı A, Bağış B. Nano-hibrit bir kompozit rezinin yüzey sertliğinin in vitro olarak incelenmesi. A.Ü.Diş Hek. Fak. Derg. 2005;32:91-98.
  • Yücel T, Tarım B, Ulukapı H, Demirci M. Ön bölge dişlerde direkt estetik restorasyonlar. T.D.B.D. 2004;83:10-22.
  • Terry DA. Applications of nanotechnology. Pract. Proced. Aesthet. Dent. 2004;16:220-222.
  • Dabanoğlu A. Nano kompozitler. T.D.B. Dişhekimliğinde Klinik Dergisi. 2004;17:20-25.
  • Condon JR, Ferrance JL. Reduced polymerization stress through non-bonded nanofiller particles. Biomaterials. 2002;23:3807-3815.
  • Duke ES. Has dentistry moved into the nanotechnology era? Compend. Cont. Educ. Dent. 2003;24:380-382.
  • Yap AU, Yap SH, Teo CK, Ng JJ. Comparision of surface finish of new aesthetic restorative materials. Oper. Dent. 2004;29:100-104.
  • Davis N. A nanotechnology composite. Compend. Contin. Educ. Dent. 2003;24:662-667.
  • Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin composite. J. Dent. 2008;36:186-193.
  • Rüttermann S, Wandrey C, Raab WHM, Janda R. Novel nano-particles as fillers for an experimental resin-based restorative material. Acta Biomat. 2008;6:1846-1853.
  • Janda R, Roulet JF, Lata M, Rüttermann S. Water sorption and solubility of contemporary resin-based filling materials. J. Biomed. Mater. Res. 2007;82:545-551.
  • West RD, Malhotra VM. Rupture of nanoparticle agglomerates and formulation of Al2O3-epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym. Eng. Sci. 2006;46:421-430.
  • Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007;23:51-59.
  • Illie N, Rencz A, Hickel R. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 2013;17(1):185-93.
  • Sadechi M, Lynch CD. The effect of flowable materials on the microleakage of Class II composite restorations that extend apical to the cemento-enamel junction. Oper Dent. 2009;34(3):306-11.
  • Angerame D, De Biasi M. Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites? A systematic review. Oper Dent. 2018;43(4):E191-E209.
  • Alzraikat H, Burrow MF, Maghaireh GA, Taha NA. Nanofilled resin composite properties and clinical performance: A review. Oper Dent. 2018;43(4):E173-E190.
  • Nagano D, Nakajima M, Takahashi M, et al. Effect of water aging of adherend composite on repair bond strength of nanofilled composites. J Adhes Dent. 2018;20(5):425-433.

In Vitro Koşullarda Farklı İki Nanohibrit Akışkan Kompozitin Derin Class II Kavitelerde Mikrosızıntı Açısından Değerlendirilmesi

Year 2020, , 326 - 339, 29.12.2020
https://doi.org/10.38079/igusabder.825208

Abstract

Amaç: Mine-sement sınırının altında hazırlanan kavitelerde mikrosızıntı ile mücadele edebilmek oldukça güçtür. Bu nedenle çalışmanın amacı derin class II kavitelerdeki stres ve marginal bölgedeki kapanma problemlerinin çözümüne yönelik son yıllarda sağlanan teknolojik ilerlemelerle geliştirilen nano dolduruculu kompozitlerin akışkan formlarının açık sandviç tekniği ile restore edilen derin kavitelerdeki etkinliğinin incelenmesidir. 
Yöntem: 60 adet dişe standart meziyo-okluzal (MO), aproksimal kutu (box) şeklinde kaviteler, oklüzo-gingival derinliği mine-sement sınırının 1 mm altında olacak şekilde ve aproksimal kutunun ebatları 2x4x6 mm olacak şekilde açılmıştır. Restorasyonları bitirilen dişler rastgele seçilerek 3 gruba ayrılmıştır (n=20). Grup 1 kontrol grubudur ve kaviteler direkt kompozit (Filtek Z250) uygulaması ile bitirilmiştir. Grup 2 de basamakta Supreme XT Flow, Grup 3 te basamakta Grandio Flow kullanılmış olup, her 3 grubun üst yapıları mikrohibrit kompozit rezin (Filtek Z250) ile restore edilmiştir. Tüm örnekler termo-mekanik yüklemeye maruz bırakılarak yaşlandırılmıştır. Mikrosızıntı tayini bazik fuksin boyasının penetrasyon miktarının stereomikroskop (X40) altında incelenmesi ile yapılarak istatistiksel analize tabi tutulmuştur. 
Bulgular: Sonuçların değerlendirilmesinde Mann Whitney U Test kullanılmıştır. Her iki nano dolduruculu akışkan kompozitler Supreme XT Flow ve Grandio Flow kontrol grubunda yer alan mikrohibrit rezine istatistiksel olarak anlamlı bir üstünlük sağlayamamışlardır (p>0,05). Ayrıca Supreme ve Grandio materyallerinin mikrosızıntı dereceleri arasında istatistiksel olarak anlamlı bir farklılık bulunamamıştır (p>0,05). 
Sonuç: Nanohibrit akışkan kompozitler kendilerinden beklenen derin class II kavitelerdeki mikrosızıntıyı azaltma konusunda daha üstün özellikler sergileyememiştir.

References

  • Kidd EA. Microleakage in relation to amalgam and composite restorations. A laboratory study. Br. Dent. J. 1976;141:305-310.
  • Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hibrid layer. Oper. Dent. 1995;20:18-25.
  • Bergenholtz G, Cox CF, Loesche WJ, Syed SA. Bacterial leakage around dental restorations: its effects on the dental pulp. J. Oral. Pathol. 1982;11:439-50.
  • Going RE, Massler M, Dute HL. Marginal penetration of dental restorations by different radioactive isotopes. J. Dent. Res. 1960;39:273-84.
  • Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent. Assoc. 2003;134:1382-1390.
  • Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J. Nanotechnol. 2004;1:130-156.
  • Nalçacı A, Bağış B. Nano-hibrit bir kompozit rezinin yüzey sertliğinin in vitro olarak incelenmesi. A.Ü.Diş Hek. Fak. Derg. 2005;32:91-98.
  • Yücel T, Tarım B, Ulukapı H, Demirci M. Ön bölge dişlerde direkt estetik restorasyonlar. T.D.B.D. 2004;83:10-22.
  • Terry DA. Applications of nanotechnology. Pract. Proced. Aesthet. Dent. 2004;16:220-222.
  • Dabanoğlu A. Nano kompozitler. T.D.B. Dişhekimliğinde Klinik Dergisi. 2004;17:20-25.
  • Condon JR, Ferrance JL. Reduced polymerization stress through non-bonded nanofiller particles. Biomaterials. 2002;23:3807-3815.
  • Duke ES. Has dentistry moved into the nanotechnology era? Compend. Cont. Educ. Dent. 2003;24:380-382.
  • Yap AU, Yap SH, Teo CK, Ng JJ. Comparision of surface finish of new aesthetic restorative materials. Oper. Dent. 2004;29:100-104.
  • Davis N. A nanotechnology composite. Compend. Contin. Educ. Dent. 2003;24:662-667.
  • Curtis AR, Shortall AC, Marquis PM, Palin WM. Water uptake and strength characteristics of a nanofilled resin composite. J. Dent. 2008;36:186-193.
  • Rüttermann S, Wandrey C, Raab WHM, Janda R. Novel nano-particles as fillers for an experimental resin-based restorative material. Acta Biomat. 2008;6:1846-1853.
  • Janda R, Roulet JF, Lata M, Rüttermann S. Water sorption and solubility of contemporary resin-based filling materials. J. Biomed. Mater. Res. 2007;82:545-551.
  • West RD, Malhotra VM. Rupture of nanoparticle agglomerates and formulation of Al2O3-epoxy nanocomposites using ultrasonic cavitation approach: effects on the structural and mechanical properties. Polym. Eng. Sci. 2006;46:421-430.
  • Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled compared to universal and microfilled composites. Dent. Mater. 2007;23:51-59.
  • Illie N, Rencz A, Hickel R. Investigations towards nano-hybrid resin-based composites. Clin Oral Investig. 2013;17(1):185-93.
  • Sadechi M, Lynch CD. The effect of flowable materials on the microleakage of Class II composite restorations that extend apical to the cemento-enamel junction. Oper Dent. 2009;34(3):306-11.
  • Angerame D, De Biasi M. Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites? A systematic review. Oper Dent. 2018;43(4):E191-E209.
  • Alzraikat H, Burrow MF, Maghaireh GA, Taha NA. Nanofilled resin composite properties and clinical performance: A review. Oper Dent. 2018;43(4):E173-E190.
  • Nagano D, Nakajima M, Takahashi M, et al. Effect of water aging of adherend composite on repair bond strength of nanofilled composites. J Adhes Dent. 2018;20(5):425-433.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Anıl Çetin 0000-0002-0963-4769

Publication Date December 29, 2020
Acceptance Date November 26, 2020
Published in Issue Year 2020

Cite

JAMA Çetin A. In Vitro Koşullarda Farklı İki Nanohibrit Akışkan Kompozitin Derin Class II Kavitelerde Mikrosızıntı Açısından Değerlendirilmesi. IGUSABDER. 2020;:326–339.

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)