Research Article
BibTex RIS Cite

Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans

Year 2023, Issue: 19, 68 - 81, 29.04.2023
https://doi.org/10.38079/igusabder.1021179

Abstract

Aim: The antimicrobial cetylpyridinium chloride (CPC) is used in the management of denture stomatitis-associated oral candidiasis as an alternative therapy as well as for oral hygiene. Cetylpyridinium chloride survives in the oral cavity for long periods at low doses, which fluctuates due to the dynamics of the oral cavity. In this study, it was aimed to evaluate the impact of different sub-therapeutic CPC concentrations (1/100, 1/200) for different time periods (0.,5., 2., 24., 48. h) on the expression of drug-resistance genes (CDR1, CDR2, MDR1, ERG11) in Candida albicans SC5314.
Method: Total RNA was extracted immediately after antimicrobial exposure using the Biospeedy® Tri-Easy Isolation Kit followed by Real-Time Quantitative Reverse Transcription polymerase chain reaction (qRT-PCR). The data were analyzed by the comparative 2-ΔΔCT method to calculate the relative expression of the target genes after treatment with different CPC concentrations, standardized to the housekeeping gene Actin.
Results: In this study, it was found that the drug resistance gene expression levels increased after exposure to high CPC concentrations (1/100) for 48 h, whereas the gene expression levels were downregulated at 1/200.
Conclusion: These results may provide an insight into the mechanisms of action of drug-resistance genes in Candida albicans and aid the development of future strategies for using CPC as an alternative therapy.

Supporting Institution

Marmara University, Scientific Research Projects Committee

Project Number

No. SAG- B-040712 0261

Thanks

Thanks to Prof. Dr. Tanju Kadir for valuable discussions and feedback on the manuscript.

References

  • Paulone S, Malavasi G, Ardizzoni A, et al. Candida albicans survival, growth and biofilm formation are differently affected by mouthwashes: An in vitro study. New Microbiol. 2017;40(1):45-52.
  • Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321(5887):365-367.
  • Sreenivasan PK, Haraszthy VI, Zambon JJ. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol. 2013;56(1):14-20.
  • Pitten FA, Kramer A. Efficacy of cetylpyridinium chloride used as oropharyngeal antiseptic. Arzneimittel-Forschung/Drug Res. 2001;51(7):588-595.
  • Liu J, Ling JQ, Wu CD. Cetylpyridinium chloride suppresses gene expression associated with halitosis. Arch Oral Biol. 2013;58(11):1686-1691.
  • Hiom SJ, Furr JR, Russell AD, Dickinson JR. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of saccharomyces cerevisiae. Microbios. 1993;74(299):111-120.
  • Edlind MP, Smith WL, Edlind TD. Effects of cetylpyridinium chloride resistance and treatment on fluconazole activity versus candida albicans. Antimicrob Agents Chemother. 2005;49(2):843-845.
  • Chandra J, Mukherjee PK, Leidich SD, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80(3):903-908.
  • Edgerton M, Scannapieco FA, Reddy MS, Levine MJ. Human submandibular-sublingual saliva promotes adhesion of candida albicans to polymethylmethacrylate. Infect Immun. 1993;61(6):2644-2652.
  • Spoering AL, Lewis K. Biofilms and planktonic cells of pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001;183(23):6746-6751.
  • De Oliveira Santos GC, Vasconcelos CC, Lopes AJ, et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front Microbiol. 2018;9(7):1351-1373.
  • Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria-is there cause for concern? Front Microbiol. 2019;10(3):587-598.
  • Giuliana G, Pizzo G, Milici ME, Giangreco R. In vitro activities of antimicrobial agents against candida species. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(1):44-49.
  • Sanglard D. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol. 2002;5(4):379-385.
  • Perea S, López-Ribot JL, Kirkpatrick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45(10):2676-2684.
  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of candida albicans. Antimicrob Agents Chemother. 2002;46(6):1704-1713.
  • Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother. 1996;40(10):2300-2305.
  • Uygun-Can B, Kadir T, Gumru B. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of candida albicans. Arch Oral Biol. 2016;62:20-27.
  • Ellepola A, Samaranayake L. The effect of brief exposure to sub-therapeutic concentrations of chlorhexidine gluconate on the germ tube formation of oral candida albicans and its relationship to post-antifungal effect. Oral Dis. 2008;6(3):166-171.
  • Anil S, Samaranayake LP. Brief exposure to antimycotics reduces the extracellular phospholipase activity of candida albicans and candida tropicalis. Chemotherapy. 2003;49(5):243-247.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408.
  • Marcotte L, Therien-Aubin H, Sandt C, Barbeau J, Lafleur M. Solute size effects on the diffusion in biofilms of Streptococcus mutans. Biofouling. 2004;20(4-5):189-201.
  • Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C. Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother. 2002;46(5):1469-1474.
  • Sandt C, Barbeau J, Gagnon M-A, Lafleur M. Role of the ammonium group in the diffusion of quaternary ammonium compounds in streptococcus mutans biofilms. J Antimicrob Chemother. 2007;60(6):1281-1287.
  • Versteeg P, Rosema N, Hoenderdos N, Slot D, Van der Weijden G. The plaque inhibitory effect of a CPC mouthrinse in a 3-day plaque accumulation model - a cross-over study. Int J Dent Hyg. 2010;8(4):269-275.
  • Ardizzoni A, Pericolini E, Paulone S, et al. In vitro effects of commercial mouthwashes on several virulence traits of candida albicans, viridans streptococci and enterococcus faecalis colonizing the oral cavity. PLoS One. 2018;13(11):1-20.
  • Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000;44(3):640-646.
  • LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 2006;50(11):3839-3846.
  • Lewis K. Persister cells. Annu Rev Microbiol. 2010;64(1):357-372.
  • Nailis H, Kucharíková S, Ricicová M, et al. Real-time PCR expression profiling of genes encoding potential virulence factors in candida albicans biofilms: Identification of model-dependent and -independent gene expression. BMC Microbiol. 2010;10(1):114-125.
  • White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11(2):382-402.
  • Mateus C, Crow SA, Ahearn DG. Adherence of candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother. 2004;48(9):3358-3366.
  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333-4340.
  • Nett JE, Lepak AJ, Marchillo K, Andes DR. Time course global gene expression analysis of an in vivo candida biofilm. J Infect Dis. 2009;200(2):307-313.
  • Lepak A, Nett J, Lincoln L, Marchillo K, Andes D. Time course of microbiologic outcome and gene expression in candida albicans during and following in vitro and in vivo exposure to fluconazole. Antimicrob Agents Chemother. 2006;50(4):1311-1319.
  • Al-Fattani MA, Douglas LJ. Biofilm matrix of candida albicans and candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999-1008.
  • Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(PART1):10-24.
  • Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3(3):11-21. doi:10.3389/fmed.2016.00011
  • Bandara HMHN, Hewavitharana AK, Shaw PN, Smyth HDC, Samaranayake LP. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int J Pharm. 2020;578:1190-1196.
  • Janeczko M, Kochanowicz E. Silymarin. a Popular Dietary Supplement Shows Anti–Candida Activity. Antibiotics. 2019;8(4):206-213.
  • Raut J, Karuppayil SM, Raut JS, Shridhar Bansode B, Khanderao Jadhav A, Karuppayil SM. Activity of allyl isothiocyanate and its synergy with fluconazole against candida albicans biofilms screening of bark drugs for the inhibitors of biofilm formation in candida albicans. J Microbiol Biotechnol. 2017;27(4):685-693.
  • Sun W, Zhang L, Lu X, Feng L, Sun S. The synergistic antifungal effects of sodium phenylbutyrate combined with azoles against Candida albicans via the regulation of the Ras–cAMP–PKA signalling pathway and virulence. Can J Microbiol. 2019;65(2):105-115.

Setilpridinyum Klorür Candida Albicans Direnç Genlerini İndükler

Year 2023, Issue: 19, 68 - 81, 29.04.2023
https://doi.org/10.38079/igusabder.1021179

Abstract

Amaç: Antimikrobiyal setilpridinyum klorür (CPC), ağız hijyeninin yanı sıra alternatif bir tedavi olarak protez stomatitiyle ilişkili oral kandidiyazis tedavisinde kullanılır. Setilpridinyum klorür (CPC), ağız boşluğunun dinamikleri nedeniyle dilue olarak ağız boşluğunda düşük dozlarda uzun süre mevcut kalır. Bu çalışmada, farklı zaman periyotlarında (0.,5., 2., 24., 48. saat) farklı alt terapötik CPC konsantrasyonlarının (1/100, 1/200) Candida albicans SC5314'te ilaca direnç genlerinin (CDR1, CDR2, MDR1, ERG11) ekspresyonu üzerindeki etkisinin değerlendirilmesi amaçlanmıştır.
Yöntem: Toplam RNA, antimikrobiyal ile maruziyetten hemen sonra Biospeedy® Tri-Easy Isolation Kit ve ardından qRT-PCR kullanılarak ekstre edildi. Bu veriler, farklı CPC konsantrasyonları ile muameleden sonra hedef genlerin nispi ekspresyonunu hesaplamak için karşılaştırmalı 2-ΔΔCT yöntemiyle analiz edildi, Aktin housekeeping genine standardize edildi.
Bulgular: Bu çalışmada, 48 saat boyunca, yüksek CPC konsantrasyonuna (1/100) maruz kalan örneklerde Candida ilaç direnci gen ekspresyon seviyelerinin arttığı, buna karşın 1/200 konsantrasyonunda bekletildiğinde azaldığı bulundu.
Sonuç: Bu sonuçlar, Candida albicans'ta ilaca dirençli genlerin etki mekanizmaları hakkında bir fikir verebilir ve alternatif bir tedavi olarak CPC'yi kullanmak için gelecekteki stratejilerin geliştirilmesine yardımcı olabilir.

Project Number

No. SAG- B-040712 0261

References

  • Paulone S, Malavasi G, Ardizzoni A, et al. Candida albicans survival, growth and biofilm formation are differently affected by mouthwashes: An in vitro study. New Microbiol. 2017;40(1):45-52.
  • Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321(5887):365-367.
  • Sreenivasan PK, Haraszthy VI, Zambon JJ. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol. 2013;56(1):14-20.
  • Pitten FA, Kramer A. Efficacy of cetylpyridinium chloride used as oropharyngeal antiseptic. Arzneimittel-Forschung/Drug Res. 2001;51(7):588-595.
  • Liu J, Ling JQ, Wu CD. Cetylpyridinium chloride suppresses gene expression associated with halitosis. Arch Oral Biol. 2013;58(11):1686-1691.
  • Hiom SJ, Furr JR, Russell AD, Dickinson JR. Effects of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of saccharomyces cerevisiae. Microbios. 1993;74(299):111-120.
  • Edlind MP, Smith WL, Edlind TD. Effects of cetylpyridinium chloride resistance and treatment on fluconazole activity versus candida albicans. Antimicrob Agents Chemother. 2005;49(2):843-845.
  • Chandra J, Mukherjee PK, Leidich SD, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80(3):903-908.
  • Edgerton M, Scannapieco FA, Reddy MS, Levine MJ. Human submandibular-sublingual saliva promotes adhesion of candida albicans to polymethylmethacrylate. Infect Immun. 1993;61(6):2644-2652.
  • Spoering AL, Lewis K. Biofilms and planktonic cells of pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol. 2001;183(23):6746-6751.
  • De Oliveira Santos GC, Vasconcelos CC, Lopes AJ, et al. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front Microbiol. 2018;9(7):1351-1373.
  • Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria-is there cause for concern? Front Microbiol. 2019;10(3):587-598.
  • Giuliana G, Pizzo G, Milici ME, Giangreco R. In vitro activities of antimicrobial agents against candida species. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(1):44-49.
  • Sanglard D. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol. 2002;5(4):379-385.
  • Perea S, López-Ribot JL, Kirkpatrick WR, et al. Prevalence of molecular mechanisms of resistance to azole antifungal agents in candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2001;45(10):2676-2684.
  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA. Resistance mechanisms in clinical isolates of candida albicans. Antimicrob Agents Chemother. 2002;46(6):1704-1713.
  • Sanglard D, Ischer F, Monod M, Bille J. Susceptibilities of candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother. 1996;40(10):2300-2305.
  • Uygun-Can B, Kadir T, Gumru B. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of candida albicans. Arch Oral Biol. 2016;62:20-27.
  • Ellepola A, Samaranayake L. The effect of brief exposure to sub-therapeutic concentrations of chlorhexidine gluconate on the germ tube formation of oral candida albicans and its relationship to post-antifungal effect. Oral Dis. 2008;6(3):166-171.
  • Anil S, Samaranayake LP. Brief exposure to antimycotics reduces the extracellular phospholipase activity of candida albicans and candida tropicalis. Chemotherapy. 2003;49(5):243-247.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25(4):402-408.
  • Marcotte L, Therien-Aubin H, Sandt C, Barbeau J, Lafleur M. Solute size effects on the diffusion in biofilms of Streptococcus mutans. Biofouling. 2004;20(4-5):189-201.
  • Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C. Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother. 2002;46(5):1469-1474.
  • Sandt C, Barbeau J, Gagnon M-A, Lafleur M. Role of the ammonium group in the diffusion of quaternary ammonium compounds in streptococcus mutans biofilms. J Antimicrob Chemother. 2007;60(6):1281-1287.
  • Versteeg P, Rosema N, Hoenderdos N, Slot D, Van der Weijden G. The plaque inhibitory effect of a CPC mouthrinse in a 3-day plaque accumulation model - a cross-over study. Int J Dent Hyg. 2010;8(4):269-275.
  • Ardizzoni A, Pericolini E, Paulone S, et al. In vitro effects of commercial mouthwashes on several virulence traits of candida albicans, viridans streptococci and enterococcus faecalis colonizing the oral cavity. PLoS One. 2018;13(11):1-20.
  • Brooun A, Liu S, Lewis K. A dose-response study of antibiotic resistance in pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2000;44(3):640-646.
  • LaFleur MD, Kumamoto CA, Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother. 2006;50(11):3839-3846.
  • Lewis K. Persister cells. Annu Rev Microbiol. 2010;64(1):357-372.
  • Nailis H, Kucharíková S, Ricicová M, et al. Real-time PCR expression profiling of genes encoding potential virulence factors in candida albicans biofilms: Identification of model-dependent and -independent gene expression. BMC Microbiol. 2010;10(1):114-125.
  • White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11(2):382-402.
  • Mateus C, Crow SA, Ahearn DG. Adherence of candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother. 2004;48(9):3358-3366.
  • Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in candida albicans biofilms: Phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333-4340.
  • Nett JE, Lepak AJ, Marchillo K, Andes DR. Time course global gene expression analysis of an in vivo candida biofilm. J Infect Dis. 2009;200(2):307-313.
  • Lepak A, Nett J, Lincoln L, Marchillo K, Andes D. Time course of microbiologic outcome and gene expression in candida albicans during and following in vitro and in vivo exposure to fluconazole. Antimicrob Agents Chemother. 2006;50(4):1311-1319.
  • Al-Fattani MA, Douglas LJ. Biofilm matrix of candida albicans and candida tropicalis: Chemical composition and role in drug resistance. J Med Microbiol. 2006;55(8):999-1008.
  • Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(PART1):10-24.
  • Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med. 2016;3(3):11-21. doi:10.3389/fmed.2016.00011
  • Bandara HMHN, Hewavitharana AK, Shaw PN, Smyth HDC, Samaranayake LP. A novel, quorum sensor-infused liposomal drug delivery system suppresses Candida albicans biofilms. Int J Pharm. 2020;578:1190-1196.
  • Janeczko M, Kochanowicz E. Silymarin. a Popular Dietary Supplement Shows Anti–Candida Activity. Antibiotics. 2019;8(4):206-213.
  • Raut J, Karuppayil SM, Raut JS, Shridhar Bansode B, Khanderao Jadhav A, Karuppayil SM. Activity of allyl isothiocyanate and its synergy with fluconazole against candida albicans biofilms screening of bark drugs for the inhibitors of biofilm formation in candida albicans. J Microbiol Biotechnol. 2017;27(4):685-693.
  • Sun W, Zhang L, Lu X, Feng L, Sun S. The synergistic antifungal effects of sodium phenylbutyrate combined with azoles against Candida albicans via the regulation of the Ras–cAMP–PKA signalling pathway and virulence. Can J Microbiol. 2019;65(2):105-115.
There are 42 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Articles
Authors

Banu Uygun-can 0000-0002-9577-0352

Project Number No. SAG- B-040712 0261
Early Pub Date April 29, 2023
Publication Date April 29, 2023
Acceptance Date February 28, 2023
Published in Issue Year 2023 Issue: 19

Cite

APA Uygun-can, B. (2023). Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi(19), 68-81. https://doi.org/10.38079/igusabder.1021179
AMA Uygun-can B. Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans. IGUSABDER. April 2023;(19):68-81. doi:10.38079/igusabder.1021179
Chicago Uygun-can, Banu. “Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 19 (April 2023): 68-81. https://doi.org/10.38079/igusabder.1021179.
EndNote Uygun-can B (April 1, 2023) Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 19 68–81.
IEEE B. Uygun-can, “Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans”, IGUSABDER, no. 19, pp. 68–81, April 2023, doi: 10.38079/igusabder.1021179.
ISNAD Uygun-can, Banu. “Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 19 (April 2023), 68-81. https://doi.org/10.38079/igusabder.1021179.
JAMA Uygun-can B. Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans. IGUSABDER. 2023;:68–81.
MLA Uygun-can, Banu. “Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 19, 2023, pp. 68-81, doi:10.38079/igusabder.1021179.
Vancouver Uygun-can B. Cetylpyridinium Chloride Induces Resistance Genes in Candida Albicans. IGUSABDER. 2023(19):68-81.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)