Review
BibTex RIS Cite

Is Physical Disability a Barrier to Detecting Body Composition?

Year 2023, Issue: 19, 314 - 326, 29.04.2023
https://doi.org/10.38079/igusabder.1180134

Abstract

It is estimated that more than one billion people worldwide have a disability. This number corresponds to 15% of the world's population, and the number of people with disabilities is gradually increasing due to chronic diseases and the aging of the population. Individuals who are born with a disability or who later become disabled often face significant nutritional problems. The use of anthropometric methods in the evaluation of nutrition is important in determining body composition. On the other hand, determining the body composition according to the type of disability presents various difficulties. For this reason, reliable criteria are needed to determine the body composition for the evaluation of nutrition in individuals with disabilities. This review aims to highlight the gaps in the literature by discussing the anthropometric measurements used in determining body composition in some disability situations such as amputation, cerebral palsy, down syndrome, and turner syndrome with existing references, and to present a Turkish resource to dietitians and clinicians.

References

  • World Health Organization. Disability and health. World Health Organization https://www.who.int/news-room/fact-sheets/detail/disability-and-health Yayınlanma tarihi 24 Kasım 2021. Erişim tarihi 22 Mart 2022.
  • World Health Organization. International Classification of Functioning, Disability and Health (ICF). World Health Organization. https://icd.who.int/dev11/l-icf/en#/http%3A%2F%2Fid.who.int%2Ficd%2Fentity%2F1626363729 Yayınlanma tarihi 23 Eylül 2022. Erişim tarihi 26 Eylül 2022.
  • Groce N, Challenger E, Berman-Bieler R, et al. Malnutrition and disability: Unexplored opportunities for collaboration. Pediatr Int Child Health. 2014;34(4):308-314. doi: 101179/2046905514Y0000000156.
  • Soldavini J. Krause's food & The nutrition care process. J Nutr Educ Behav. 2019;51(10):1225.
  • Gil A, Martínez de Victoria E, Maldonado J. Tratado de Nutrición: Nutrición Humana en el Estado de Salud. 2nd ed. Médica Panamericana; 2010.
  • McDonald CL, Westcott-McCoy S, Weaver MR, Haagsma J, Kartin D. Global prevalence of traumatic non-fatal limb amputation. Prosthet Orthot Int. 2021;45(2):105-114.
  • Rosenberg DE, Turner AP, Littman AJ. Body mass index patterns following dysvascular lower extremity amputation. Disabil Rehabil. 2013;35:1269-1275.
  • Littman AJ, Thompson ML, Arterburn DE, et al. Lower-limb amputation and body weight changes in men. J Rehabil Res Dev. 2015;52(2):159-169.
  • Frost AP, Norman Giest T, Ruta AA, Snow TK, Millard-Stafford M. Limitations of body mass index for counseling individuals with unilateral lower extremity amputation. Prosthet Orthot Int. 2017;41(2):186-93.
  • Amputee Coalition. About Body Mass Index (BMI). Amputee Coalition. https://www.amputee-coalition.org/limb-loss-resource-center/resources-filtered/resources-by-topic/healthy-living/about-bmi/ Yayınlanma tarihi Ekim 2019. Erişim tarihi 26 Eylül 2022.
  • Cavedon V, Sandri M, Peluso I, Zancanaro C, Milanese C. Body composition and bone mineral density in athletes with a physical impairment. PeerJ. 2021;9:e11296. doi:10.7717/peerj.11296.
  • Choi HJ, Ko CY, Chang Y, Kim GS, Choi K, Kim CH. Development and validation of bioimpedance prediction equations for fat-free mass in unilateral male amputees. PeerJ. 2022;198:111145. doi: 10.7717/peerj.10970.
  • Lee J, Doo S, Lee Y, et al. Validity of bioelectrical impedance analysis for older amputees with leprosy. Surg Metab Nutr. 2021;12(1):7-15.
  • Nowak AM, Kwapis A, Kosmol A. Assessment of the upper limbs maximum power and the locomotion speed in amputee football players. Motriz: J. Phys. Ed. 2021;27:1-6. doi:10.1590/S1980-65742021001221.
  • Ilkim M, Canpolat B, Akyol B. The Effects of eight-week regular training in amateur amputee football team athletes' body composition. Turkish J Sport Exerc. 2018;20(3):199-206.
  • Özkan A, Kayihan G, Köklü Y, et al. The relationship between body composition, anaerobic performance and sprint ability of amputee soccer players. J Hum Kinet. 2012;35(1):141-146.
  • Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S. Accelerated bio-cognitive aging in down syndrome: State of the art and possible deceleration strategies. Aging Cell. 2019;18(3):e12903. doi: 10.1111/acel.12903.
  • Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN. Is obesity linked to aging?: Adipose tissue and the role of telomeres. Ageing Res Rev. 2012;11(2):220-229.
  • Spear D, Novak P, Rosenzweig L, et al. Academy of nutrition and dietetics: Standards of practice and standards of professional performance for registered dietitians (competent, proficient, and expert) in intellectual and developmental disabilities. J Acad Nutr Diet. 2012;112(9):1454-1464.
  • Styles ME, Cole TJ, Dennis J, Preece MA. New cross sectional stature, weight and head circumference references of down's syndrome in the UK and republic of Ireland. Arch Dis Child. 2002;87:104-108.
  • The Down Syndrome Medical Interest Group. Growth Charts. DSMG. https://www.dsmig.org.uk/information-resources/growth-charts/ Yayınlanma tarihi Ocak 2019. Erişim tarihi 26 Eylül 2019.
  • Centers for Disease Control and Prevention. Growth Charts for Children with Down Syndrome.CDC. https://www.cdc.gov/ncbddd/birthdefects/downsyndrome/growth-charts.html Yayınlanma tarihi 7 Aralık 2020. Erişim tarihi. 26 Eylül 2022.
  • Zemel BS, Pipan M, Stallings VA, et al. Growth charts for children with down syndrome in the United States. Pediatrics. 2015;136(5):1204-1211.
  • Su X, Lau JTF, Yu CM, et al. Growth charts for Chinese down syndrome children from birth to 14 years. Arch Dis Child. 2014;99(9):824-829.
  • Martínez-Espinosa RM, Vila MDM, García-Galbis MR. Evidences from clinical trials in down syndrome: Diet, exercise and body composition. Int J Environ Res Public Health. 2020;17(12):1-18.
  • Seron BB, Silva RAC, Greguol M. Effects of two programs of exercise on body composition of adolescents with down syndrome. Rev Paul Pediatr. 2014;32(1):92-98.
  • Boer PH, Moss SJ. Effect of continuous aerobic vs. interval training on selected anthropometrical, physiological and functional parameters of adults with down syndrome. J Intellect Disabil Res. 2016;60(4):322-334.
  • Xicota L, Rodríguez J, Langohr K, Fitó M, Dierssen M, de la Torre R. Effect of epigallocatechin gallate on the body composition and lipid profile of down syndrome individuals: Implications for clinical management. Clin Nutr. 2020;39(4):1292-300.
  • Magge SN, Zemel BS, Pipan ME, Gidding SS, Kelly A. Cardiometabolic risk and body composition in youth with down syndrome. Pediatrics. 2019;144(2):e20190137. doi:10.1542/peds.2019-0137.
  • Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: A narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9:453-464.
  • Zhou J, Butler EE, Rose J. Neurologic correlates of gait abnormalities in cerebral palsy: Implications for treatment. Front Hum Neurosci. 2017;11:103. doi:10.3389/fnhum.2017.00103.
  • Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149:658-662.
  • Stevenson RD, Conaway M, Chumlea WC, et al. Growth and health in children with moderate-to-severe cerebral palsy. Pediatrics. 2006;118:1010-1018.
  • Henderson RC, Lark RK, Renner JB, et al. Dual X-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom. 2001;4:325-335.
  • Gurka MJ, Kuperminc MN, Busby MG, et al. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy. Dev Med Child Neurol. 2010;52:35-41.
  • Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709-723.
  • Finbråten AK, Martins C, Andersen GL, et al. Assessment of body composition in children with cerebral palsy: A cross-sectional study in Norway. Dev Med Child Neurol. 2015;57(9):858-64.
  • Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46:475-480.
  • Samson-Fang L, Bell KL. Assessment of growth and nutrition in children with cerebral palsy. Eur J Clin Nutr. 2013;67(2):5-8.
  • Gravholt CH, Viuff MH, Brun S, Stochholm K, Andersen NH. Turner syndrome: Mechanisms and management. Nat Rev Endocrinol. 2019;15(10):601-614.
  • Wooten N, Bakalov VK, Hill S, Bondy CA. Reduced abdominal adiposity and improved glucose tolerance in growth hormone-treated girls with turner syndrome. J Clin Endocrinol Metab. 2008;93(6):2109-2114.
  • Saari A, Sankilampi U, Dunkel L. Multiethnic WHO growth charts may not be optimal in the screening of disorders affecting height: Turner syndrome as a model. JAMA Pediatr. 2013;167(2):194-195.
  • Bertapelli F, Barros-Filho Ade A, Antonio MÂ, Barbeta CJ, de LemosMarini SH, Guerra-Junior G. Growth curves for girls with Turner syndrome. Biomed Res Int. 2014;2014:687978. doi:10.1155/2014/687978.
  • Rongen-Westerlaken C, Corel L, van den Broeck J, et al. Reference values for height, height velocity and weight in turner's syndrome. Swedish study group for GH treatment. Acta Paediatrica. 1997;86:937-942.
  • Isojima T, Yokoya S, Ito J, Naiki Y, Horikawa R, Tanaka T. Proposal of new auxological standards for japanese girls with turner syndrome. Clinical Pediatric Endocrinology. 2010;19(3):69-82.
  • Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for the care of girls and women with Turner Syndrome: Proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol. 2017;177(3):1-70.
  • Álvarez-Nava F, Racines M, Witt J, Guarderas J, Estévez M, Lanes R. Anthropometric variables as cardiovascular risk predictors in a cohort of adult subjects with Turner Syndrome. Diabetes Metab Syndr Obes. 2019;12:1795-1809.

Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?

Year 2023, Issue: 19, 314 - 326, 29.04.2023
https://doi.org/10.38079/igusabder.1180134

Abstract

Dünyada bir milyardan fazla insanın engeli olduğu tahmin edilmektedir. Bu sayı dünya nüfusunun %15’ine karşılık gelmekte olup kronik hastalıklar ve nüfusun yaşlanması nedeniyle engelli kişilerin sayısı giderek artmaktadır. Engelli olarak doğan veya sonradan engelli olan bireyler genellikle beslenmeyle ilgili önemli sorunlarla karşı karşıya kalmaktadır. Diğer taraftan, engelin türüne göre vücut bileşiminin saptanması çeşitli zorluklar barındırmaktadır. Bu nedenle engelli bireylerde beslenme durumunun saptanması için vücut bileşiminin belirlenmesinde güvenilir ölçütlere ihtiyaç duyulmaktadır. Bu derleme, bazı engellilik durumlarında (ampütasyon, serebral palsi, Down sendromu ve Turner sendromu) vücut bileşiminin belirlenmesinde kullanılan antropometrik ölçümleri mevcut referanslar ile tartışarak alana katkı sağlamayı, diyetisyen ve klinisyenlere bir kaynak sunmayı amaçlamaktadır.

References

  • World Health Organization. Disability and health. World Health Organization https://www.who.int/news-room/fact-sheets/detail/disability-and-health Yayınlanma tarihi 24 Kasım 2021. Erişim tarihi 22 Mart 2022.
  • World Health Organization. International Classification of Functioning, Disability and Health (ICF). World Health Organization. https://icd.who.int/dev11/l-icf/en#/http%3A%2F%2Fid.who.int%2Ficd%2Fentity%2F1626363729 Yayınlanma tarihi 23 Eylül 2022. Erişim tarihi 26 Eylül 2022.
  • Groce N, Challenger E, Berman-Bieler R, et al. Malnutrition and disability: Unexplored opportunities for collaboration. Pediatr Int Child Health. 2014;34(4):308-314. doi: 101179/2046905514Y0000000156.
  • Soldavini J. Krause's food & The nutrition care process. J Nutr Educ Behav. 2019;51(10):1225.
  • Gil A, Martínez de Victoria E, Maldonado J. Tratado de Nutrición: Nutrición Humana en el Estado de Salud. 2nd ed. Médica Panamericana; 2010.
  • McDonald CL, Westcott-McCoy S, Weaver MR, Haagsma J, Kartin D. Global prevalence of traumatic non-fatal limb amputation. Prosthet Orthot Int. 2021;45(2):105-114.
  • Rosenberg DE, Turner AP, Littman AJ. Body mass index patterns following dysvascular lower extremity amputation. Disabil Rehabil. 2013;35:1269-1275.
  • Littman AJ, Thompson ML, Arterburn DE, et al. Lower-limb amputation and body weight changes in men. J Rehabil Res Dev. 2015;52(2):159-169.
  • Frost AP, Norman Giest T, Ruta AA, Snow TK, Millard-Stafford M. Limitations of body mass index for counseling individuals with unilateral lower extremity amputation. Prosthet Orthot Int. 2017;41(2):186-93.
  • Amputee Coalition. About Body Mass Index (BMI). Amputee Coalition. https://www.amputee-coalition.org/limb-loss-resource-center/resources-filtered/resources-by-topic/healthy-living/about-bmi/ Yayınlanma tarihi Ekim 2019. Erişim tarihi 26 Eylül 2022.
  • Cavedon V, Sandri M, Peluso I, Zancanaro C, Milanese C. Body composition and bone mineral density in athletes with a physical impairment. PeerJ. 2021;9:e11296. doi:10.7717/peerj.11296.
  • Choi HJ, Ko CY, Chang Y, Kim GS, Choi K, Kim CH. Development and validation of bioimpedance prediction equations for fat-free mass in unilateral male amputees. PeerJ. 2022;198:111145. doi: 10.7717/peerj.10970.
  • Lee J, Doo S, Lee Y, et al. Validity of bioelectrical impedance analysis for older amputees with leprosy. Surg Metab Nutr. 2021;12(1):7-15.
  • Nowak AM, Kwapis A, Kosmol A. Assessment of the upper limbs maximum power and the locomotion speed in amputee football players. Motriz: J. Phys. Ed. 2021;27:1-6. doi:10.1590/S1980-65742021001221.
  • Ilkim M, Canpolat B, Akyol B. The Effects of eight-week regular training in amateur amputee football team athletes' body composition. Turkish J Sport Exerc. 2018;20(3):199-206.
  • Özkan A, Kayihan G, Köklü Y, et al. The relationship between body composition, anaerobic performance and sprint ability of amputee soccer players. J Hum Kinet. 2012;35(1):141-146.
  • Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S. Accelerated bio-cognitive aging in down syndrome: State of the art and possible deceleration strategies. Aging Cell. 2019;18(3):e12903. doi: 10.1111/acel.12903.
  • Tzanetakou IP, Katsilambros NL, Benetos A, Mikhailidis DP, Perrea DN. Is obesity linked to aging?: Adipose tissue and the role of telomeres. Ageing Res Rev. 2012;11(2):220-229.
  • Spear D, Novak P, Rosenzweig L, et al. Academy of nutrition and dietetics: Standards of practice and standards of professional performance for registered dietitians (competent, proficient, and expert) in intellectual and developmental disabilities. J Acad Nutr Diet. 2012;112(9):1454-1464.
  • Styles ME, Cole TJ, Dennis J, Preece MA. New cross sectional stature, weight and head circumference references of down's syndrome in the UK and republic of Ireland. Arch Dis Child. 2002;87:104-108.
  • The Down Syndrome Medical Interest Group. Growth Charts. DSMG. https://www.dsmig.org.uk/information-resources/growth-charts/ Yayınlanma tarihi Ocak 2019. Erişim tarihi 26 Eylül 2019.
  • Centers for Disease Control and Prevention. Growth Charts for Children with Down Syndrome.CDC. https://www.cdc.gov/ncbddd/birthdefects/downsyndrome/growth-charts.html Yayınlanma tarihi 7 Aralık 2020. Erişim tarihi. 26 Eylül 2022.
  • Zemel BS, Pipan M, Stallings VA, et al. Growth charts for children with down syndrome in the United States. Pediatrics. 2015;136(5):1204-1211.
  • Su X, Lau JTF, Yu CM, et al. Growth charts for Chinese down syndrome children from birth to 14 years. Arch Dis Child. 2014;99(9):824-829.
  • Martínez-Espinosa RM, Vila MDM, García-Galbis MR. Evidences from clinical trials in down syndrome: Diet, exercise and body composition. Int J Environ Res Public Health. 2020;17(12):1-18.
  • Seron BB, Silva RAC, Greguol M. Effects of two programs of exercise on body composition of adolescents with down syndrome. Rev Paul Pediatr. 2014;32(1):92-98.
  • Boer PH, Moss SJ. Effect of continuous aerobic vs. interval training on selected anthropometrical, physiological and functional parameters of adults with down syndrome. J Intellect Disabil Res. 2016;60(4):322-334.
  • Xicota L, Rodríguez J, Langohr K, Fitó M, Dierssen M, de la Torre R. Effect of epigallocatechin gallate on the body composition and lipid profile of down syndrome individuals: Implications for clinical management. Clin Nutr. 2020;39(4):1292-300.
  • Magge SN, Zemel BS, Pipan ME, Gidding SS, Kelly A. Cardiometabolic risk and body composition in youth with down syndrome. Pediatrics. 2019;144(2):e20190137. doi:10.1542/peds.2019-0137.
  • Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD. Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: A narrative review of the literature. J Cachexia Sarcopenia Muscle. 2018;9:453-464.
  • Zhou J, Butler EE, Rose J. Neurologic correlates of gait abnormalities in cerebral palsy: Implications for treatment. Front Hum Neurosci. 2017;11:103. doi:10.3389/fnhum.2017.00103.
  • Stevenson RD. Use of segmental measures to estimate stature in children with cerebral palsy. Arch Pediatr Adolesc Med. 1995;149:658-662.
  • Stevenson RD, Conaway M, Chumlea WC, et al. Growth and health in children with moderate-to-severe cerebral palsy. Pediatrics. 2006;118:1010-1018.
  • Henderson RC, Lark RK, Renner JB, et al. Dual X-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom. 2001;4:325-335.
  • Gurka MJ, Kuperminc MN, Busby MG, et al. Assessment and correction of skinfold thickness equations in estimating body fat in children with cerebral palsy. Dev Med Child Neurol. 2010;52:35-41.
  • Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709-723.
  • Finbråten AK, Martins C, Andersen GL, et al. Assessment of body composition in children with cerebral palsy: A cross-sectional study in Norway. Dev Med Child Neurol. 2015;57(9):858-64.
  • Gauld LM, Kappers J, Carlin JB, Robertson CF. Height prediction from ulna length. Dev Med Child Neurol. 2004;46:475-480.
  • Samson-Fang L, Bell KL. Assessment of growth and nutrition in children with cerebral palsy. Eur J Clin Nutr. 2013;67(2):5-8.
  • Gravholt CH, Viuff MH, Brun S, Stochholm K, Andersen NH. Turner syndrome: Mechanisms and management. Nat Rev Endocrinol. 2019;15(10):601-614.
  • Wooten N, Bakalov VK, Hill S, Bondy CA. Reduced abdominal adiposity and improved glucose tolerance in growth hormone-treated girls with turner syndrome. J Clin Endocrinol Metab. 2008;93(6):2109-2114.
  • Saari A, Sankilampi U, Dunkel L. Multiethnic WHO growth charts may not be optimal in the screening of disorders affecting height: Turner syndrome as a model. JAMA Pediatr. 2013;167(2):194-195.
  • Bertapelli F, Barros-Filho Ade A, Antonio MÂ, Barbeta CJ, de LemosMarini SH, Guerra-Junior G. Growth curves for girls with Turner syndrome. Biomed Res Int. 2014;2014:687978. doi:10.1155/2014/687978.
  • Rongen-Westerlaken C, Corel L, van den Broeck J, et al. Reference values for height, height velocity and weight in turner's syndrome. Swedish study group for GH treatment. Acta Paediatrica. 1997;86:937-942.
  • Isojima T, Yokoya S, Ito J, Naiki Y, Horikawa R, Tanaka T. Proposal of new auxological standards for japanese girls with turner syndrome. Clinical Pediatric Endocrinology. 2010;19(3):69-82.
  • Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for the care of girls and women with Turner Syndrome: Proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol. 2017;177(3):1-70.
  • Álvarez-Nava F, Racines M, Witt J, Guarderas J, Estévez M, Lanes R. Anthropometric variables as cardiovascular risk predictors in a cohort of adult subjects with Turner Syndrome. Diabetes Metab Syndr Obes. 2019;12:1795-1809.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Betül Sukan Karaçağıl 0000-0003-3469-6408

Eda Köksal 0000-0002-7930-9910

Early Pub Date April 29, 2023
Publication Date April 29, 2023
Acceptance Date March 27, 2023
Published in Issue Year 2023 Issue: 19

Cite

APA Sukan Karaçağıl, B., & Köksal, E. (2023). Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi(19), 314-326. https://doi.org/10.38079/igusabder.1180134
AMA Sukan Karaçağıl B, Köksal E. Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?. IGUSABDER. April 2023;(19):314-326. doi:10.38079/igusabder.1180134
Chicago Sukan Karaçağıl, Betül, and Eda Köksal. “Fiziksel Engellilik Vücut Bileşimini Saptamada Engel Mi?”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 19 (April 2023): 314-26. https://doi.org/10.38079/igusabder.1180134.
EndNote Sukan Karaçağıl B, Köksal E (April 1, 2023) Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 19 314–326.
IEEE B. Sukan Karaçağıl and E. Köksal, “Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?”, IGUSABDER, no. 19, pp. 314–326, April 2023, doi: 10.38079/igusabder.1180134.
ISNAD Sukan Karaçağıl, Betül - Köksal, Eda. “Fiziksel Engellilik Vücut Bileşimini Saptamada Engel Mi?”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 19 (April 2023), 314-326. https://doi.org/10.38079/igusabder.1180134.
JAMA Sukan Karaçağıl B, Köksal E. Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?. IGUSABDER. 2023;:314–326.
MLA Sukan Karaçağıl, Betül and Eda Köksal. “Fiziksel Engellilik Vücut Bileşimini Saptamada Engel Mi?”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 19, 2023, pp. 314-26, doi:10.38079/igusabder.1180134.
Vancouver Sukan Karaçağıl B, Köksal E. Fiziksel Engellilik Vücut Bileşimini Saptamada Engel mi?. IGUSABDER. 2023(19):314-26.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)