Review
BibTex RIS Cite

The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury

Year 2023, Issue: 21 - December, 1251 - 1261, 05.01.2024
https://doi.org/10.38079/igusabder.1352762

Abstract

Spinal cord injury (SCI) is a significant cause of disability, affecting both children and adults worldwide. These injuries can arise from various conditions, including traumatic, vascular, tumor-related, infection-related, inflammatory (such as multiple sclerosis), or neurodegenerative (like motor neuron disease) origins. Among these, traumatic spinal cord injuries caused by reasons like falls and traffic accidents stand out, particularly in developed countries. Epidural electrical stimulation (EES) was initially used to inhibit chronic pain. Subsequent studies have shown its effectiveness in individuals with SCI. In research spanning from the past to the present, EES applications have been utilized for activities such as motor function improvement, sensory enhancement, bowel functions, increased sexual functionality, and regulating heart rhythms in people with SCI. However, the exact impact of EES remains inconclusive at present and is still a subject of debate.

References

  • 1. Friedli L, Rosenzweig ES, Barraud Q, et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med. 2015;7(302):302ra134. doi: 10.1126/scitranslmed.aac5811.
  • 2. Sabourin MD, Turpin BA, Head BA, Wu MD, Sharan MD, Hoelscher MD. Spinal cords Stimulation in the 21st century reviewing innovation in neuromodulation. JHN Journal. 2019;14(1):5.
  • 3. Khorasanizadeh M, Yousefifard M, Eskian M, et al. Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 2019;1-17. doi: 10.3171/2018.10.SPINE18802.
  • 4. Abrams GM, Ganguly K. Management of chronic spinal cord dysfunction. Continuum (Minneap Minn). 2015;21(1 Spinal Cord Disorders):188-200. doi: 10.1212/01.CON.0000461092.86865.a4.
  • 5. Waring WP, Biering-Sorensen F, Burns S, et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346-352. doi: 10.1080/10790268.2010.11689712.
  • 6. O'Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017;127(9):3259-3270. doi: 10.1172/JCI90608.
  • 7. Dimitrijevic MR, Kakulas BA. Spinal cord injuries, human neuropathology and neurophysiology. Acta Myol. 2020;39(4):353-358. doi: 10.36185/2532-1900-039.
  • 8. Van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182-1185. doi: 10.1126/science.1217416.
  • 9. Capogrosso M, Milekovic T, Borton D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284-288. doi: 10.1038/nature20118.
  • 10. Pradat PF, Hayon D, Blancho S, Neveu P, Khamaysa M, Guerout N. Advances in spinal cord neuromodulation: the ıntegration of neuroengineering, computational approaches, and ınnovative conceptual frameworks. J Pers Med. 2023;13(6):993. doi: 10.3390/jpm13060993.
  • 11. Asboth L, Friedli L, Beauparlant J, et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci. 2018;21(4):576-588. doi: 10.1038/s41593-018-0093-5.
  • 12. Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998;860:360-376. doi: 10.1111/j.1749-6632.1998.tb09062.x.
  • 13. Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord. 2004;42(7):401-416. doi: 10.1038/sj.sc.3101615.
  • 14. Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002;40(2):65-68. doi: 10.1038/sj.sc.3101263.
  • 15. Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677-1682. doi: 10.1038/s41591-018-0175-7.
  • 16. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938-1947. doi: 10.1016/S0140-6736(11)60547-3.
  • 17. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394-1409. doi: 10.1093/brain/awu038.
  • 18. Krames ES, Hunter Peckham P, Rezai A, Aboelsaad F, Krames ES, Chapter 1 - What is Neuromodulation? in: Peckham PH, Rezai AR, (Eds.), Neuromodulation, Academic Press, San Diego, 2009, pp. 3–8.
  • 19. Cook AW, Weinstein SP. Chronic dorsal column stimulation in multiple sclerosis. Preliminary report. NY State J Med. 1973;73(24):2868-2872.
  • 20. Siegfried J, Lazorthes Y, Broggi G. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophysiol. 1981;44(1-3):77-92. doi: 10.1159/000102187.
  • 21. Barolat G, Myklebust JB, Wenninger W. Effects of spinal cord stimulation on spasticity and spasms secondary to myelopathy. Appl Neurophysiol. 1988;51(1):29-44. doi: 10.1159/000099381.
  • 22. Richardson RR, McLone DG. Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol. 1978;9(3):153-155.
  • 23. Waltz JM. Spinal cord stimulation: a quarter century of development and investigation. A review of its development and effectiveness in 1,336 cases. Stereotact Funct Neurosurg. 1997;69(1-4 Pt 2):288-299. doi: 10.1159/000099890.
  • 24. Capogrosso M, Wenger N, Raspopovic S, et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci. 2013;33(49):19326-19340. doi: 10.1523/JNEUROSCI.1688-13.2013.
  • 25. Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord. 2000;38(8):473-489. doi: 10.1038/sj.sc.3101039.
  • 26. Greiner N, Barra B, Schiavone G, et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun. 2021;12(1):435. doi: 10.1038/s41467-020-20703-1.
  • 27. Lempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient-specific analysis of neural activation during spinal cord stimulation for pain. Neuromodulation. 2020;23(5):572-581. doi: 10.1111/ner.13037.
  • 28. Coburn B, Sin WK. A theoretical study of epidural electrical stimulation of the spinal cord--Part I: Finite element analysis of stimulus fields. IEEE Trans Biomed Eng. 1985;32(11):971-977. doi: 10.1109/tbme.1985.325648
  • 29. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500-544. doi: 10.1113/jphysiol.1952.sp004764.
  • 30. Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci. 2007;26(2):275-295. doi: 10.1016/j.humov.2007.01.005.
  • 31. Hofstoetter US, Perret I, Bayart A, et al. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. iScience. 2020;24(1):101930. doi: 10.1016/j.isci.2020.101930.
  • 32. Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006;157(2):253–63.
  • 33. Hoglund BK, Zurn CA, Madden LR, et al. Mapping spinal cord stimulation-evoked muscle responses in patients with chronic spinal cord injury. Neuromodulation. 2022;S1094-7159(22)01360-5. doi: 10.1016/j.neurom.2022.10.058.
  • 34. Rejc E, Smith AC, Weber KA, et al. Spinal cord imaging markers and recovery of volitional leg movement with spinal cord epidural stimulation in individuals with clinically motor complete spinal cord injury. Front Syst Neurosci. 2020;14:559313. doi: 10.3389/fnsys.2020.559313.
  • 35. Peña Pino I, Hoover C, Venkatesh S, et al. Long-term spinal cord stimulation after chronic complete spinal cord injury enables volitional movement in the absence of stimulation. Front Syst Neurosci. 2020;14:35. doi: 10.3389/fnsys.2020.00035.
  • 36. Darrow D, Balser D, Netoff TI, et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J Neurotrauma. 2019;36(15):2325-2336. doi: 10.1089/neu.2018.6006.
  • 37. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65-71. doi: 10.1038/s41586-018-0649-2.
  • 38. Lu DC, Edgerton VR, Modaber M, et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil Neural Repair. 2016;30(10):951-962. doi: 10.1177/1545968316644344.
  • 39. Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126-133. doi: 10.1038/s41586-023-06094-5.
  • 40. Özer S, Gündüz S, Akdemir M, Açar G. Investigation of the Effect of Epidural Electrical Stimulation on Neurological Bladder Symptom in a Patient With Spinal Cord Injury: A Case Report. Inovation in Rehabilitation – 1: Balance International Congress. Nov 25-26 2022; Gaziantep, Turkey
  • 41. Grahn PJ, Lavrov IA, Sayenko DG, et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin Proc. 2017;92(4):544-554. doi: 10.1016/j.mayocp.2017.02.014.
  • 42. Beck L, Veith D, Linde M, et al. Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. J Spinal Cord Med. 2021;44(5):800-805. doi: 10.1080/10790268.2020.1739894.

Spinal Kord Yaralanması Olan Bireylerde Epidural Elektriksel Stimülasyon Uygulamasının Etkisi

Year 2023, Issue: 21 - December, 1251 - 1261, 05.01.2024
https://doi.org/10.38079/igusabder.1352762

Abstract

Spinal kord yaralanması (SKY), dünya çapında her yaştan insanı etkileyen ciddi sakatlıklara yol açmaktadır. Travma, damar sorunları, tümörler, enfeksiyonlar, inflamasyon (örn. multipl skleroz) ve nörodejenerasyon (örn. motor nöron hastalığı) gibi çeşitli faktörler bu yaralanmalara neden olabilmektedir. Bunlar arasında, özellikle gelişmiş ülkelerde, düşme ve kazalardan kaynaklanan travmatik SKY öne çıkmaktadır. Başlangıçta kronik ağrı kontrolü için kullanılan epidural elektriksel stimülasyonun (EES), SKY olan bireylerde etkinliği kanıtlanmıştır. Zamanla EES, SKY olan kişilerde motor fonksiyonu geliştirmek, duyu geliştirmek, bağırsak fonksiyonlarını düzenlemek, cinsel yetenekleri geliştirmek ve hatta kalp ritimlerini modüle etmek için kullanılmaktadır. Ancak EES'nin kesin etkisi belirsizliğini korumakta ve devam eden tartışmalara konu olmaktadır.

References

  • 1. Friedli L, Rosenzweig ES, Barraud Q, et al. Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates. Sci Transl Med. 2015;7(302):302ra134. doi: 10.1126/scitranslmed.aac5811.
  • 2. Sabourin MD, Turpin BA, Head BA, Wu MD, Sharan MD, Hoelscher MD. Spinal cords Stimulation in the 21st century reviewing innovation in neuromodulation. JHN Journal. 2019;14(1):5.
  • 3. Khorasanizadeh M, Yousefifard M, Eskian M, et al. Neurological recovery following traumatic spinal cord injury: a systematic review and meta-analysis. J Neurosurg Spine. 2019;1-17. doi: 10.3171/2018.10.SPINE18802.
  • 4. Abrams GM, Ganguly K. Management of chronic spinal cord dysfunction. Continuum (Minneap Minn). 2015;21(1 Spinal Cord Disorders):188-200. doi: 10.1212/01.CON.0000461092.86865.a4.
  • 5. Waring WP, Biering-Sorensen F, Burns S, et al. 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346-352. doi: 10.1080/10790268.2010.11689712.
  • 6. O'Shea TM, Burda JE, Sofroniew MV. Cell biology of spinal cord injury and repair. J Clin Invest. 2017;127(9):3259-3270. doi: 10.1172/JCI90608.
  • 7. Dimitrijevic MR, Kakulas BA. Spinal cord injuries, human neuropathology and neurophysiology. Acta Myol. 2020;39(4):353-358. doi: 10.36185/2532-1900-039.
  • 8. Van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science. 2012;336(6085):1182-1185. doi: 10.1126/science.1217416.
  • 9. Capogrosso M, Milekovic T, Borton D, et al. A brain-spine interface alleviating gait deficits after spinal cord injury in primates. Nature. 2016;539(7628):284-288. doi: 10.1038/nature20118.
  • 10. Pradat PF, Hayon D, Blancho S, Neveu P, Khamaysa M, Guerout N. Advances in spinal cord neuromodulation: the ıntegration of neuroengineering, computational approaches, and ınnovative conceptual frameworks. J Pers Med. 2023;13(6):993. doi: 10.3390/jpm13060993.
  • 11. Asboth L, Friedli L, Beauparlant J, et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat Neurosci. 2018;21(4):576-588. doi: 10.1038/s41593-018-0093-5.
  • 12. Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998;860:360-376. doi: 10.1111/j.1749-6632.1998.tb09062.x.
  • 13. Minassian K, Jilge B, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord. 2004;42(7):401-416. doi: 10.1038/sj.sc.3101615.
  • 14. Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002;40(2):65-68. doi: 10.1038/sj.sc.3101263.
  • 15. Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677-1682. doi: 10.1038/s41591-018-0175-7.
  • 16. Harkema S, Gerasimenko Y, Hodes J, et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377(9781):1938-1947. doi: 10.1016/S0140-6736(11)60547-3.
  • 17. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137(Pt 5):1394-1409. doi: 10.1093/brain/awu038.
  • 18. Krames ES, Hunter Peckham P, Rezai A, Aboelsaad F, Krames ES, Chapter 1 - What is Neuromodulation? in: Peckham PH, Rezai AR, (Eds.), Neuromodulation, Academic Press, San Diego, 2009, pp. 3–8.
  • 19. Cook AW, Weinstein SP. Chronic dorsal column stimulation in multiple sclerosis. Preliminary report. NY State J Med. 1973;73(24):2868-2872.
  • 20. Siegfried J, Lazorthes Y, Broggi G. Electrical spinal cord stimulation for spastic movement disorders. Appl Neurophysiol. 1981;44(1-3):77-92. doi: 10.1159/000102187.
  • 21. Barolat G, Myklebust JB, Wenninger W. Effects of spinal cord stimulation on spasticity and spasms secondary to myelopathy. Appl Neurophysiol. 1988;51(1):29-44. doi: 10.1159/000099381.
  • 22. Richardson RR, McLone DG. Percutaneous epidural neurostimulation for paraplegic spasticity. Surg Neurol. 1978;9(3):153-155.
  • 23. Waltz JM. Spinal cord stimulation: a quarter century of development and investigation. A review of its development and effectiveness in 1,336 cases. Stereotact Funct Neurosurg. 1997;69(1-4 Pt 2):288-299. doi: 10.1159/000099890.
  • 24. Capogrosso M, Wenger N, Raspopovic S, et al. A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci. 2013;33(49):19326-19340. doi: 10.1523/JNEUROSCI.1688-13.2013.
  • 25. Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord. 2000;38(8):473-489. doi: 10.1038/sj.sc.3101039.
  • 26. Greiner N, Barra B, Schiavone G, et al. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord. Nat Commun. 2021;12(1):435. doi: 10.1038/s41467-020-20703-1.
  • 27. Lempka SF, Zander HJ, Anaya CJ, Wyant A, Ozinga JG, Machado AG. Patient-specific analysis of neural activation during spinal cord stimulation for pain. Neuromodulation. 2020;23(5):572-581. doi: 10.1111/ner.13037.
  • 28. Coburn B, Sin WK. A theoretical study of epidural electrical stimulation of the spinal cord--Part I: Finite element analysis of stimulus fields. IEEE Trans Biomed Eng. 1985;32(11):971-977. doi: 10.1109/tbme.1985.325648
  • 29. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500-544. doi: 10.1113/jphysiol.1952.sp004764.
  • 30. Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci. 2007;26(2):275-295. doi: 10.1016/j.humov.2007.01.005.
  • 31. Hofstoetter US, Perret I, Bayart A, et al. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. iScience. 2020;24(1):101930. doi: 10.1016/j.isci.2020.101930.
  • 32. Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006;157(2):253–63.
  • 33. Hoglund BK, Zurn CA, Madden LR, et al. Mapping spinal cord stimulation-evoked muscle responses in patients with chronic spinal cord injury. Neuromodulation. 2022;S1094-7159(22)01360-5. doi: 10.1016/j.neurom.2022.10.058.
  • 34. Rejc E, Smith AC, Weber KA, et al. Spinal cord imaging markers and recovery of volitional leg movement with spinal cord epidural stimulation in individuals with clinically motor complete spinal cord injury. Front Syst Neurosci. 2020;14:559313. doi: 10.3389/fnsys.2020.559313.
  • 35. Peña Pino I, Hoover C, Venkatesh S, et al. Long-term spinal cord stimulation after chronic complete spinal cord injury enables volitional movement in the absence of stimulation. Front Syst Neurosci. 2020;14:35. doi: 10.3389/fnsys.2020.00035.
  • 36. Darrow D, Balser D, Netoff TI, et al. Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J Neurotrauma. 2019;36(15):2325-2336. doi: 10.1089/neu.2018.6006.
  • 37. Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65-71. doi: 10.1038/s41586-018-0649-2.
  • 38. Lu DC, Edgerton VR, Modaber M, et al. Engaging cervical spinal cord networks to reenable volitional control of hand function in tetraplegic patients. Neurorehabil Neural Repair. 2016;30(10):951-962. doi: 10.1177/1545968316644344.
  • 39. Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain-spine interface. Nature. 2023;618(7963):126-133. doi: 10.1038/s41586-023-06094-5.
  • 40. Özer S, Gündüz S, Akdemir M, Açar G. Investigation of the Effect of Epidural Electrical Stimulation on Neurological Bladder Symptom in a Patient With Spinal Cord Injury: A Case Report. Inovation in Rehabilitation – 1: Balance International Congress. Nov 25-26 2022; Gaziantep, Turkey
  • 41. Grahn PJ, Lavrov IA, Sayenko DG, et al. Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin Proc. 2017;92(4):544-554. doi: 10.1016/j.mayocp.2017.02.014.
  • 42. Beck L, Veith D, Linde M, et al. Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. J Spinal Cord Med. 2021;44(5):800-805. doi: 10.1080/10790268.2020.1739894.
There are 42 citations in total.

Details

Primary Language English
Subjects Physiotherapy
Journal Section Articles
Authors

Görkem Açar 0000-0002-0970-8625

Rıfat Mutuş 0000-0001-5140-2462

Gülşah Konakoğlu 0000-0002-0051-0137

Early Pub Date January 8, 2024
Publication Date January 5, 2024
Acceptance Date December 11, 2023
Published in Issue Year 2023 Issue: 21 - December

Cite

APA Açar, G., Mutuş, R., & Konakoğlu, G. (2024). The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi(21), 1251-1261. https://doi.org/10.38079/igusabder.1352762
AMA Açar G, Mutuş R, Konakoğlu G. The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. IGUSABDER. January 2024;(21):1251-1261. doi:10.38079/igusabder.1352762
Chicago Açar, Görkem, Rıfat Mutuş, and Gülşah Konakoğlu. “The Effect of Epidural Electrical Stimulation Application in Individuals With Spinal Cord Injury”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 21 (January 2024): 1251-61. https://doi.org/10.38079/igusabder.1352762.
EndNote Açar G, Mutuş R, Konakoğlu G (January 1, 2024) The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 21 1251–1261.
IEEE G. Açar, R. Mutuş, and G. Konakoğlu, “The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury”, IGUSABDER, no. 21, pp. 1251–1261, January 2024, doi: 10.38079/igusabder.1352762.
ISNAD Açar, Görkem et al. “The Effect of Epidural Electrical Stimulation Application in Individuals With Spinal Cord Injury”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi 21 (January 2024), 1251-1261. https://doi.org/10.38079/igusabder.1352762.
JAMA Açar G, Mutuş R, Konakoğlu G. The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. IGUSABDER. 2024;:1251–1261.
MLA Açar, Görkem et al. “The Effect of Epidural Electrical Stimulation Application in Individuals With Spinal Cord Injury”. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, no. 21, 2024, pp. 1251-6, doi:10.38079/igusabder.1352762.
Vancouver Açar G, Mutuş R, Konakoğlu G. The Effect of Epidural Electrical Stimulation Application in Individuals with Spinal Cord Injury. IGUSABDER. 2024(21):1251-6.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)