Review
BibTex RIS Cite

Chitosan-Based Hydrogel Dressings Containing Silver Nanoparticles and Drugs Applied in Late Healing Wounds and Infection Sites

Year 2024, Issue: 23, 901 - 919, 31.08.2024
https://doi.org/10.38079/igusabder.1249634

Abstract

A wound is a disruption that occurs in tissue, or organ integrity. Wound types are classified as acute and chronic wounds. Acute wounds respond well to healing, while delayed healing is observed in chronic wounds. Damage occurring in chronic wound types such as diabetic foot, venous leg, and pressure ulcers exacerbates the condition by making the environment vulnerable to microorganisms. It is reported that over one billion people worldwide have acute and chronic wounds. In the past, wounds were treated by primitive methods. Nowadays, functional wound dressings that provide a moist and warm environment are used for wound treatment. Research on wound dressings, which are ideal wound cover materials, continues with natural and synthetic polymer types. Chitosan, obtained from the most abundant natural polymer chitin in nature, is preferred in wound dressings due to its adhesive, anti-fungal, bactericidal properties, and oxygen permeability. Adding nanoparticles to hydrogel compositions is an alternative method applied to prevent adverse effects on the skin. Polymer types are applied for the targeted delivery of active substances to the target tissue and to accelerate wound healing. It is noteworthy that there is a lack of antibacterial and anti-inflammatory active substance combinations in chitosan-based hydrogel preparation techniques. It is necessary to understand the methods used in the production of chitosan-based hydrogel wound dressings more deeply and to develop new strategies. For this purpose, in this review, chitosan-based silver nanoparticle and anti-inflammatory drug-containing hydrogels with new functional properties for biomedical applications and their antibacterial activity and drug release properties in difficult-to-heal wound areas have been examined.

Project Number

221419008

References

  • 1. Koyutürk A, Demiray Soyaslan D. Yara ve yanık tedavisinde kullanılan örtüler. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2016;7(1):58-65.
  • 2. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clinics in Dermatology. 2007;25(1):19-25. doi: 10.1016/j.clindermatol.2006.12.005.
  • 3. Dumville JC, O'Meara S, Deshpande S, Speak K. Alginate dressings for healing diabetic foot ulcers. Cochrane Database of Systematic Reviews. 2012;2:CD009110. doi: 10.1002/14651858.CD009110.pub2.
  • 4. Türsen Ü. Ülser tedavisinde yara örtüleri. Turkish Journal of Dermatology. 2013;7(2):61-71.
  • 5. Stewart MW. Treatment of diabetic retinopathy: recent advances and unresolved challenges. World Journal of Diabetes. 2016;7(16):333-341. doi: 10.4239/wjd.v7.i16.333.
  • 6. Moody A. Use of a hydrogel dressing for management of a painful leg ulcer. British Journal of Community Nursing. 2006;11(6):12-17. doi: 10.12968/bjcn.2006.11.Sup3.21212.
  • 7. Jiang T, James R, Kumbar SG, Laurencin CT. Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery. In: Kumbar SG, Laurencin CT, Deng M, eds. Natural and Synthetic Biomedical Polymers. 2014:91-113. doi: 10.1016/B978-0-12-396983-5.00005-3.
  • 8. Wang Q, Zhang J, Wang A. Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydrate Polymers. 2009;78(4):731-737. doi: 10.1016/j.carbpol.2009.06.010.
  • 9. Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. International Journal of Pharmaceutics. 2006;312(1-2):113-118. doi: 10.1016/j.ijpharm.2006.01.003.
  • 10. Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorganic Chemistry. 2019;84:115-124. doi: 10.1016/j.bioorg.2018.11.036.
  • 11. Wolcott RD, Cutting KF, Dowd SE, Percival SL. Types of wounds and infections. In: Percival SL, Cutting KF, Eds. Microbiology of Wounds. Boca Raton: CRC Press; 2010:219-232.
  • 12. Aktaş Ş. Kronik yarada lokal faktörler ve yardımcı tedaviler. ANKEM Dergisi. 2012;26(2):217-222.
  • 13. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in Wound Care. 2018;7(7):209-231. doi: 10.1089/wound.2017.0761.
  • 14. Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Current Dermatology Reports. 2018;7(4):350–358. doi: 10.1007/s13671-018-0234-9.
  • 15. Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and synthetic polymeric biomaterials for application in wound management. Journal of Functional Biomaterials. 2023;14(9):455.
  • 16. Jinno C, Morimoto N, Ito R, et al. A comparison of conventional collagen sponge and collagen-gelatin sponge in wound healing. BioMed Research International. 2016:2016:4567146. doi: 10.1155/2016/4567146.
  • 17. Roussille G, Barthet B. Evaluation of a collagen-glycosaminoglycan complex as a dressing for gingival wounds. Journal of Materials Science: Materials in Medicine. 1991;2(4):208-211.
  • 18. Almazrooa SA, Noonan V, Woo SB. Resorbable collagen membranes: histopathologic features. Oral Surgery, Oral Medicine, Oral Pathology And Oral Radiology. 2014;118(2):236-240.
  • 19. Ghica MV, Albu MG, Leca M, Popa L, Moisescu ST. Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2011;66(11):853-861.
  • 20. Kempf M, Miyamura Y, Liu PY, et al. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32(21):4782-4792.
  • 21. Panayi AC, Haug V, Liu Q, et al. Novel application of autologous micrografts in a collagen-glycosaminoglycan scaffold for diabetic wound healing. Biomedical Materials. 2021;16(3):035032.
  • 22. Zhang F, Xie Y, Celik H, et al. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication. 2019;11(3):035020.
  • 23. Hu Y, Liu L, Gu Z, Dan W, Dan N, Yu X. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydrate Polymers. 2014;102:324-332.
  • 24. Diaz-Gomez L, Gonzalez-Prada I, Millan R, et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate Polymers. 2022;278:118924.
  • 25. Kucińska-Lipka J, Gubanska I, Janik HJPB. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polymer Bulletin. 2015;72:2399-2419
  • 26. Pang M, Huang Y, Meng F, et al. Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal. 2020;122:109365.
  • 27. Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences. 2016;10(1):27-37.
  • 28. Da Silva LP, Cerqueira MT, Correlo VM, Reis RL, Marques AP. Engineered hydrogel-based matrices for skin wound healing. In Wound Healing Biomaterials. Woodhead Publishing. 2016:227-250.
  • 29. Hunt NC, Shelton RM, Grover L. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co‐culture. Biotechnology Journal. 2009;4(5):730-737.
  • 30. Garske DS, Schmidt-Bleek K, Ellinghaus A, et al. Alginate hydrogels for in vivo bone regeneration: the immune competence of the animal model matters. Tissue Engineering Part A. 2020;26(15-16):852-862.
  • 31. Suamte L, Tirkey A, Babu PJ. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. Smart Materials in Medicine. 2023;4:243-256.
  • 32. Mobaraki M, Bizari D, Soltani M, et al. The effects of curcumin nanoparticles incorporated into collagen-alginate scaffold on wound healing of skin tissue in trauma patients. Polymers. 2021;13(24):4291.
  • 33. Perng CK, Wang YJ, Tsi CH, Ma H. In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. Journal of Surgical Research. 2011;168(1):9-15.
  • 34. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharmaceutical Research. 2006;23:1-30.
  • 35. Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. Journal of Polymer Research. 2019;26(8);201.
  • 36. Lin SP, Lo KY, Tseng TN, Liu JM, Shih TY, Cheng KC. Evaluation of PVA/ dextran/ chitosan hydrogel for wound dressing. Cellular Polymers. 2019;38(1-2):15-30.
  • 37. Kenawy ERS, Kamoun EA, Ghaly ZS, Shokr ABM, El-Meligy MA, Mahmoud YAG. Novel physically cross-linked curcumin-loaded PVA/aloe vera hydrogel membranes for acceleration of topical wound healing: In vitro and in vivo experiments. Arabian Journal for Science and Engineering. 2023;48(1):497-514.
  • 38. Yamaguchi Y, Li Z, Zhu X, Liu C, Zhang D, Dou X. Polyethylene oxide (PEO) and polyethylene glycol (PEG) polymer sieving matrix for RNA capillary electrophoresis. PloS One. 2015;10(5);e0123406.
  • 39. Szymańska E, Wojasiński M, Czarnomysy R, et al. Chitosan-enriched solution blow spun poly (ethylene oxide) nanofibers with poly (dimethylsiloxane) hydrophobic outer layer for skin healing and regeneration. International Journal of Molecular Sciences. 2022;23(9):5135.
  • 40. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science. 2010:35(10);1217-1256.
  • 41. Kapukaya R, Ciloglu O. Treatment of chronic wounds with polyurethane sponges impregnated with boric acid particles: A randomised controlled trial. International Wound Journal. 2020;17(5):1159-1165.
  • 42. Song EH, Jeong SH, Park JU, Kim S, Kim HE, Song J. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Materials Science and Engineering: C. 2017;79:866-874.
  • 43. Avinc O, Khoddami A. Overview of poly (lactic acid)(PLA) fibre: Part I: production, properties, performance, environmental impact, and end-use applications of poly (lactic acid) fibres. Fibre Chemistry. 2009;41(6):391-401.
  • 44. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics. 2011;49(12):832-864.
  • 45. Sin LT, Rahmat AR. Abdul Rahman WAW. Degradation and Stability of Poly(lactic Acid). In: Sin LT, Rahmat AR. Abdul Rahman, WAW, eds. Polylactic Acid, A Volume in Plastics Design Library. Elsevier Science; 2013: Chapter 7.
  • 46. Yoon SD, Kwon YS, Lee KS. Biodegradation and biocompatibility of poly L-lactic acid implantable mesh. International Neurourology Journal. 2017:21(Suppl 1);48.
  • 47. Kohli N, Sharma V, Brown SJ, García-Gareta E. Synthetic polymers for skin biomaterials. In Biomaterials for Skin Repair and Regeneration. 2019:125-149.
  • 48. Contardi M, Kossyvaki D, Picone P, et al. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chemical Engineering Journal. 2021;409:128144.
  • 49. Yamane K, Sato H, Ichikawa Y, Sunagawa K, Shigaki Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polymer Journal. 2014:46(11);769-775.
  • 50. Zha S, Utomo YKS, Yang L, Liang G, Liu W. Mechanic-driven biodegradable polyglycolic acid/silk fibroin nanofibrous scaffolds containing deferoxamine accelerate diabetic wound healing. Pharmaceutics. 2022:14(3);601.
  • 51. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856-8874.
  • 52. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017:1227-1249.
  • 53. Zhao G, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11(1):27-32. doi: 10.1023/A:1009253223055.
  • 54. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012;2(1):1-10. doi: 10.1186/2228-5326-2-32.
  • 55. Kalishwaralal K, Barath Mani Kanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces: 2010;79(2):340-344. doi: 10.1016/j.colsurfb.2010.04.014.
  • 56. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology. 2016;7:1831.
  • 57. Arif R, Uddin R. A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices & Sensors. 2021;4(1):e10158.
  • 58. Rogobete AF, Dragomirescu M, Bedreag OH, et al. New aspects of controlled release systems for local anaesthetics: A review. Trends in Anaesthesia and Critical Care. 2016;9:27-34. doi: 10.1016/j.tacc.2016.06.004.
  • 59. Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP. Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews. 2011;63(9):762-771. doi: 10.1016/j.addr.2011.03.016.
  • 60. Zhang D, Zhou W, Wei B, et al. Carboxyl - modified poly (vinyl alcohol) - crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate Polymers. 2015;125:189-199. doi: 10.1016/j.carbpol.2015.02.034.
  • 61. Zhang S, Li J, Li J, et al. Application status and technical analysis of chitosan - based medical dressings: A review. RSC Advances. 2020;10(56):34308-34322. doi: 10.1039/D0RA05692H.
  • 62. Mukherjee D, Azamthulla M, Santhosh S, et al. Development and characterization of chitosan-based hydrogels as wound dressing materials. Journal of Drug Delivery Science and Technology. 2018;46:498-510. doi: 10.1016/j.jddst.2018.06.008.
  • 63. Yoo HJ, Kim HD. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2008;85(2):326-333.
  • 64. Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.
  • 65. Chowdhury NA, Al-Jumaily AM. Regenerated cellulose/ polypyrrole/ silver nanoparticles/ ionic liquid composite films for potential wound healing applications. Wound Medicine. 2016;14:16-18. doi: 10.1016/j.wndm.2016.07.001.
  • 66. Xie Y, Liao X, Zhang J, Yang F, Fan Z. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. International Journal of Biological Macromolecules. 2018;119:402-412.
  • 67. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi: 10.1088/0957-4484/18/22/225103.
  • 68. Nešović K, Janković A, Radetić T, et al. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles–In vitro study. European Polymer Journal. 2019;121:109257.
  • 69. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 2010;62(1):83-99. doi: 10.1016/j.addr.2009.07.019.
  • 70. Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20(15):1407-1414. doi: 10.1016/S0142-9612(99)00046-0.
  • 71. Kidane A, Bhatt PP. Recent advances in small molecule drug delivery. Current Opinion in Chemical Biology. 2005;9(4):347-351. doi: 10.1016/j.cbpa.2005.06.006.
  • 72. Pandian M, Selvaprithviraj V, Pradeep A, Rangasamy J. In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. International Journal of Biological Macromolecules. 2021;188:501-511.
  • 73. Chu W, Wang P, Ma Z, et al. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. International Journal of Biological Macromolecules. 2023;243:125310.
  • 74. Lee YH, Hong YL, Wu TL. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Materials Science and Engineering: C. 2021;118:111385.
  • 75. Li Q, Yang D, Ma G, et al. Synthesis and characterization of chitosan-based hydrogels. International Journal of Biological Macromolecules. 2009;44(2):121-127.
  • 76. Tamura H, Furuike T, Nair SV, Jayakumar R. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers. 2011;84(2):820-824.
  • 77. Xu T, Xin M, Li M, Huang H, Zhou S. Synthesis, characteristic and antibacterial activity of N, N, N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydrate Polymers. 2010;81(4):931-936.
  • 78. Ai H, Wang F, Xia Y, Chen X, Lei C. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chemistry. 2012;132(1):493-498.
  • 79. Bianchera A, Bergonzi C, Bettini R. Controlled local drug delivery strategies from chitosan hydrogels for wound healing. Expert Opinion on Drug Delivery. 2017;14(7):897-908. doi: 10.1080/17425247.2017.1247803.
  • 80. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10(4):462-479. doi: 10.3390/polym10040462.
  • 81. Suh JKF, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials. 2000;21(24):2589-2598. doi: 10.1016/S0142-9612(00)00126-5.
  • 82. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science. 2012;37(5):659-685. doi: 10.1016/j.progpolymsci.2011.10.001.
  • 83. Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Accounts of Chemical Research. 2012;45(4):619-629. doi: 10.1021/ar200234q.
  • 84. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules: 2008;9(7):1837-1842. doi: 10.1021/bm800276d.
  • 85. Grenha A, Al-Qadi S, Seijo B, Remuñán-López C. The potential of chitosan for pulmonary drug delivery. Journal of Drug Delivery Science and Technology. 2010;20(1):33-43. doi: 10.1016/S1773-2247(10)50004-2.
  • 86. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Annals of Biomedical Engineering. 2016;44(6):2049-2061. doi: 10.1007/s10439-016-1583-9.
  • 87. Rodríguez-Acosta H, Tapia-Rivera JM, Guerrero-Guzmán A, et al. Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract. Journal of Tissue Viability. 2022;31(1):173-179. doi: 10.1016/j.jtv.2021.10.004.
  • 88. Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, et al. Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Scientific Reports. 2021;11(1):1-16. doi: 10.1038/s41598-021-90763-w.
  • 89. Ansari MT, Hasnain MS, Nayak AK, Kenawy ER. Chitosan-based nanobiocomposites in drug delivery. In Hasnain MS, Beg S, Nayak AK, eds. Chitosan in Drug Delivery. Academic Press; 2021:411-432. doi: 10.1016/B978-0-12-819336-5.00017-0.
  • 90. Rufato KB, Galdino JP, Ody KS, et al. Hydrogels based on chitosan and chitosan derivatives for biomedical applications. In Popa L, Ghica MV, Dinu-Pirvu CE, eds. Hydrogels - Smart Materials for Biomedical Applications. IntechOpen; 2019. doi:10.5772/intechopen.81811.

Geç İyileşen Yara ve Enfeksiyon Bölgelerinde Uygulanan Kitosan Temelli Gümüş Nanopartikül ve İlaç İçeren Hidrojel Yara Örtüleri

Year 2024, Issue: 23, 901 - 919, 31.08.2024
https://doi.org/10.38079/igusabder.1249634

Abstract

Yara, doku ya da organ bütünlüğünde gerçekleşmiş olan bir bozulmadır. Yara türleri akut ve kronik yara şeklinde sınıflandırılmaktadır. Akut yaralar iyileşmeye iyi yanıt verirken kronik yaralarda geç iyileşme gözlenmektedir. Kronik yara türlerinden diyabetik ayak, venöz bacak ve basınç ülserlerinde meydana gelen tahribat, ortamı mikroorganizmalara karşı savunmasız hale getirerek durumu şiddetlendirmektedir. Dünya genelinde yaklaşık bir milyarın üzerinde insanın akut ve kronik yaralara sahip olduğu bildirilmektedir. Geçmişte yaralar ilkel yöntemlerle sarılarak tedavi edilirdi. Günümüzde ise yara tedavisi için nemli ve ılık bir ortam sağlayacak fonksiyonel yara örtüleri kullanılmaktadır. Yara tedavileri için ideal yara örtüsü malzemesi olan doğal ve sentetik polimer türleri ile yara örtüsü geliştirme çalışmaları sürdürülmektedir. Doğada en fazla bulunan doğal polimer kitinden elde edilen kitosanın yapışkan, anti-fungal, bakterisidal olması ve oksijen geçirgenliği, bu biyopolimerin yara örtülerinde tercih edilmesini sağlayan faktörlerdendir. Ciltte olumsuz etkileri önlemek için hidrojel örtü bileşimlerine nanomalzemelerin eklenmesi de uygulanan alternatif bir yöntemdir. Polimer türleri etken maddelerin hedef dokuya ulaştırılması için ve yara iyileşmesinin hızlandırılması amacıyla uygulanmaktadır. Kitosan temelli hidrojel hazırlama tekniklerinde antibakteriyel ve antienflamatuvar etken madde kombinasyonlarının eksikliği dikkat çekmektedir. Kitosan tabanlı hidrojel yara örtülerin üretimindeki yöntemlerin daha derinden anlaşılması ve yeni stratejilerin geliştirilmesi gerekmektedir. Bu amaçla bu derlemede biyomedikal uygulamalar için yeni işlevsel özelliklere sahip optimize edilmiş kitosan temelli gümüş nanopartikül ve antienflamatuvar ilaç içeren hidrojeller ve zor iyileşen yara bölgelerinde antibakteriyel aktivite ve ilaç salım özellikleri incelenmiştir.

Supporting Institution

Necmettin Erbakan Üniversitesi BAP

Project Number

221419008

Thanks

Bu yayın Ufuk Avrupa (Horizon Europe) tarafından fonlanan 101079123 nolu REGENEU projesi ve Necmettin Erbakan Üniversitesi BAP-221419008 projesi kapsamında hazırlanmıştır.

References

  • 1. Koyutürk A, Demiray Soyaslan D. Yara ve yanık tedavisinde kullanılan örtüler. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2016;7(1):58-65.
  • 2. Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clinics in Dermatology. 2007;25(1):19-25. doi: 10.1016/j.clindermatol.2006.12.005.
  • 3. Dumville JC, O'Meara S, Deshpande S, Speak K. Alginate dressings for healing diabetic foot ulcers. Cochrane Database of Systematic Reviews. 2012;2:CD009110. doi: 10.1002/14651858.CD009110.pub2.
  • 4. Türsen Ü. Ülser tedavisinde yara örtüleri. Turkish Journal of Dermatology. 2013;7(2):61-71.
  • 5. Stewart MW. Treatment of diabetic retinopathy: recent advances and unresolved challenges. World Journal of Diabetes. 2016;7(16):333-341. doi: 10.4239/wjd.v7.i16.333.
  • 6. Moody A. Use of a hydrogel dressing for management of a painful leg ulcer. British Journal of Community Nursing. 2006;11(6):12-17. doi: 10.12968/bjcn.2006.11.Sup3.21212.
  • 7. Jiang T, James R, Kumbar SG, Laurencin CT. Chitosan as a biomaterial: structure, properties, and applications in tissue engineering and drug delivery. In: Kumbar SG, Laurencin CT, Deng M, eds. Natural and Synthetic Biomedical Polymers. 2014:91-113. doi: 10.1016/B978-0-12-396983-5.00005-3.
  • 8. Wang Q, Zhang J, Wang A. Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydrate Polymers. 2009;78(4):731-737. doi: 10.1016/j.carbpol.2009.06.010.
  • 9. Wittaya-areekul S, Kruenate J, Prahsarn C. Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. International Journal of Pharmaceutics. 2006;312(1-2):113-118. doi: 10.1016/j.ijpharm.2006.01.003.
  • 10. Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorganic Chemistry. 2019;84:115-124. doi: 10.1016/j.bioorg.2018.11.036.
  • 11. Wolcott RD, Cutting KF, Dowd SE, Percival SL. Types of wounds and infections. In: Percival SL, Cutting KF, Eds. Microbiology of Wounds. Boca Raton: CRC Press; 2010:219-232.
  • 12. Aktaş Ş. Kronik yarada lokal faktörler ve yardımcı tedaviler. ANKEM Dergisi. 2012;26(2):217-222.
  • 13. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: mechanisms and novel therapeutic targets. Advances in Wound Care. 2018;7(7):209-231. doi: 10.1089/wound.2017.0761.
  • 14. Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Current Dermatology Reports. 2018;7(4):350–358. doi: 10.1007/s13671-018-0234-9.
  • 15. Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and synthetic polymeric biomaterials for application in wound management. Journal of Functional Biomaterials. 2023;14(9):455.
  • 16. Jinno C, Morimoto N, Ito R, et al. A comparison of conventional collagen sponge and collagen-gelatin sponge in wound healing. BioMed Research International. 2016:2016:4567146. doi: 10.1155/2016/4567146.
  • 17. Roussille G, Barthet B. Evaluation of a collagen-glycosaminoglycan complex as a dressing for gingival wounds. Journal of Materials Science: Materials in Medicine. 1991;2(4):208-211.
  • 18. Almazrooa SA, Noonan V, Woo SB. Resorbable collagen membranes: histopathologic features. Oral Surgery, Oral Medicine, Oral Pathology And Oral Radiology. 2014;118(2):236-240.
  • 19. Ghica MV, Albu MG, Leca M, Popa L, Moisescu ST. Design and optimization of some collagen-minocycline based hydrogels potentially applicable for the treatment of cutaneous wound infections. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2011;66(11):853-861.
  • 20. Kempf M, Miyamura Y, Liu PY, et al. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32(21):4782-4792.
  • 21. Panayi AC, Haug V, Liu Q, et al. Novel application of autologous micrografts in a collagen-glycosaminoglycan scaffold for diabetic wound healing. Biomedical Materials. 2021;16(3):035032.
  • 22. Zhang F, Xie Y, Celik H, et al. Engineering small-caliber vascular grafts from collagen filaments and nanofibers with comparable mechanical properties to native vessels. Biofabrication. 2019;11(3):035020.
  • 23. Hu Y, Liu L, Gu Z, Dan W, Dan N, Yu X. Modification of collagen with a natural derived cross-linker, alginate dialdehyde. Carbohydrate Polymers. 2014;102:324-332.
  • 24. Diaz-Gomez L, Gonzalez-Prada I, Millan R, et al. 3D printed carboxymethyl cellulose scaffolds for autologous growth factors delivery in wound healing. Carbohydrate Polymers. 2022;278:118924.
  • 25. Kucińska-Lipka J, Gubanska I, Janik HJPB. Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polymer Bulletin. 2015;72:2399-2419
  • 26. Pang M, Huang Y, Meng F, et al. Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal. 2020;122:109365.
  • 27. Ahmed S, Ikram S. Chitosan based scaffolds and their applications in wound healing. Achievements in the Life Sciences. 2016;10(1):27-37.
  • 28. Da Silva LP, Cerqueira MT, Correlo VM, Reis RL, Marques AP. Engineered hydrogel-based matrices for skin wound healing. In Wound Healing Biomaterials. Woodhead Publishing. 2016:227-250.
  • 29. Hunt NC, Shelton RM, Grover L. An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co‐culture. Biotechnology Journal. 2009;4(5):730-737.
  • 30. Garske DS, Schmidt-Bleek K, Ellinghaus A, et al. Alginate hydrogels for in vivo bone regeneration: the immune competence of the animal model matters. Tissue Engineering Part A. 2020;26(15-16):852-862.
  • 31. Suamte L, Tirkey A, Babu PJ. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. Smart Materials in Medicine. 2023;4:243-256.
  • 32. Mobaraki M, Bizari D, Soltani M, et al. The effects of curcumin nanoparticles incorporated into collagen-alginate scaffold on wound healing of skin tissue in trauma patients. Polymers. 2021;13(24):4291.
  • 33. Perng CK, Wang YJ, Tsi CH, Ma H. In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. Journal of Surgical Research. 2011;168(1):9-15.
  • 34. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharmaceutical Research. 2006;23:1-30.
  • 35. Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. Journal of Polymer Research. 2019;26(8);201.
  • 36. Lin SP, Lo KY, Tseng TN, Liu JM, Shih TY, Cheng KC. Evaluation of PVA/ dextran/ chitosan hydrogel for wound dressing. Cellular Polymers. 2019;38(1-2):15-30.
  • 37. Kenawy ERS, Kamoun EA, Ghaly ZS, Shokr ABM, El-Meligy MA, Mahmoud YAG. Novel physically cross-linked curcumin-loaded PVA/aloe vera hydrogel membranes for acceleration of topical wound healing: In vitro and in vivo experiments. Arabian Journal for Science and Engineering. 2023;48(1):497-514.
  • 38. Yamaguchi Y, Li Z, Zhu X, Liu C, Zhang D, Dou X. Polyethylene oxide (PEO) and polyethylene glycol (PEG) polymer sieving matrix for RNA capillary electrophoresis. PloS One. 2015;10(5);e0123406.
  • 39. Szymańska E, Wojasiński M, Czarnomysy R, et al. Chitosan-enriched solution blow spun poly (ethylene oxide) nanofibers with poly (dimethylsiloxane) hydrophobic outer layer for skin healing and regeneration. International Journal of Molecular Sciences. 2022;23(9):5135.
  • 40. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science. 2010:35(10);1217-1256.
  • 41. Kapukaya R, Ciloglu O. Treatment of chronic wounds with polyurethane sponges impregnated with boric acid particles: A randomised controlled trial. International Wound Journal. 2020;17(5):1159-1165.
  • 42. Song EH, Jeong SH, Park JU, Kim S, Kim HE, Song J. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Materials Science and Engineering: C. 2017;79:866-874.
  • 43. Avinc O, Khoddami A. Overview of poly (lactic acid)(PLA) fibre: Part I: production, properties, performance, environmental impact, and end-use applications of poly (lactic acid) fibres. Fibre Chemistry. 2009;41(6):391-401.
  • 44. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics. 2011;49(12):832-864.
  • 45. Sin LT, Rahmat AR. Abdul Rahman WAW. Degradation and Stability of Poly(lactic Acid). In: Sin LT, Rahmat AR. Abdul Rahman, WAW, eds. Polylactic Acid, A Volume in Plastics Design Library. Elsevier Science; 2013: Chapter 7.
  • 46. Yoon SD, Kwon YS, Lee KS. Biodegradation and biocompatibility of poly L-lactic acid implantable mesh. International Neurourology Journal. 2017:21(Suppl 1);48.
  • 47. Kohli N, Sharma V, Brown SJ, García-Gareta E. Synthetic polymers for skin biomaterials. In Biomaterials for Skin Repair and Regeneration. 2019:125-149.
  • 48. Contardi M, Kossyvaki D, Picone P, et al. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chemical Engineering Journal. 2021;409:128144.
  • 49. Yamane K, Sato H, Ichikawa Y, Sunagawa K, Shigaki Y. Development of an industrial production technology for high-molecular-weight polyglycolic acid. Polymer Journal. 2014:46(11);769-775.
  • 50. Zha S, Utomo YKS, Yang L, Liang G, Liu W. Mechanic-driven biodegradable polyglycolic acid/silk fibroin nanofibrous scaffolds containing deferoxamine accelerate diabetic wound healing. Pharmaceutics. 2022:14(3);601.
  • 51. Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015;20(5):8856-8874.
  • 52. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017:1227-1249.
  • 53. Zhao G, Stevens SE. Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals. 1998;11(1):27-32. doi: 10.1023/A:1009253223055.
  • 54. Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012;2(1):1-10. doi: 10.1186/2228-5326-2-32.
  • 55. Kalishwaralal K, Barath Mani Kanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces: 2010;79(2):340-344. doi: 10.1016/j.colsurfb.2010.04.014.
  • 56. Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology. 2016;7:1831.
  • 57. Arif R, Uddin R. A review on recent developments in the biosynthesis of silver nanoparticles and its biomedical applications. Medical Devices & Sensors. 2021;4(1):e10158.
  • 58. Rogobete AF, Dragomirescu M, Bedreag OH, et al. New aspects of controlled release systems for local anaesthetics: A review. Trends in Anaesthesia and Critical Care. 2016;9:27-34. doi: 10.1016/j.tacc.2016.06.004.
  • 59. Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP. Layer-by-layer self-assembled shells for drug delivery. Advanced Drug Delivery Reviews. 2011;63(9):762-771. doi: 10.1016/j.addr.2011.03.016.
  • 60. Zhang D, Zhou W, Wei B, et al. Carboxyl - modified poly (vinyl alcohol) - crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate Polymers. 2015;125:189-199. doi: 10.1016/j.carbpol.2015.02.034.
  • 61. Zhang S, Li J, Li J, et al. Application status and technical analysis of chitosan - based medical dressings: A review. RSC Advances. 2020;10(56):34308-34322. doi: 10.1039/D0RA05692H.
  • 62. Mukherjee D, Azamthulla M, Santhosh S, et al. Development and characterization of chitosan-based hydrogels as wound dressing materials. Journal of Drug Delivery Science and Technology. 2018;46:498-510. doi: 10.1016/j.jddst.2018.06.008.
  • 63. Yoo HJ, Kim HD. Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2008;85(2):326-333.
  • 64. Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules. 2020;10(8):1169.
  • 65. Chowdhury NA, Al-Jumaily AM. Regenerated cellulose/ polypyrrole/ silver nanoparticles/ ionic liquid composite films for potential wound healing applications. Wound Medicine. 2016;14:16-18. doi: 10.1016/j.wndm.2016.07.001.
  • 66. Xie Y, Liao X, Zhang J, Yang F, Fan Z. Novel chitosan hydrogels reinforced by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for accelerating wound healing. International Journal of Biological Macromolecules. 2018;119:402-412.
  • 67. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18(22):225103. doi: 10.1088/0957-4484/18/22/225103.
  • 68. Nešović K, Janković A, Radetić T, et al. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles–In vitro study. European Polymer Journal. 2019;121:109257.
  • 69. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews. 2010;62(1):83-99. doi: 10.1016/j.addr.2009.07.019.
  • 70. Ueno H, Yamada H, Tanaka I, et al. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 1999;20(15):1407-1414. doi: 10.1016/S0142-9612(99)00046-0.
  • 71. Kidane A, Bhatt PP. Recent advances in small molecule drug delivery. Current Opinion in Chemical Biology. 2005;9(4):347-351. doi: 10.1016/j.cbpa.2005.06.006.
  • 72. Pandian M, Selvaprithviraj V, Pradeep A, Rangasamy J. In-situ silver nanoparticles incorporated N, O-carboxymethyl chitosan based adhesive, self-healing, conductive, antibacterial and anti-biofilm hydrogel. International Journal of Biological Macromolecules. 2021;188:501-511.
  • 73. Chu W, Wang P, Ma Z, et al. Lupeol-loaded chitosan-Ag+ nanoparticle/sericin hydrogel accelerates wound healing and effectively inhibits bacterial infection. International Journal of Biological Macromolecules. 2023;243:125310.
  • 74. Lee YH, Hong YL, Wu TL. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Materials Science and Engineering: C. 2021;118:111385.
  • 75. Li Q, Yang D, Ma G, et al. Synthesis and characterization of chitosan-based hydrogels. International Journal of Biological Macromolecules. 2009;44(2):121-127.
  • 76. Tamura H, Furuike T, Nair SV, Jayakumar R. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers. 2011;84(2):820-824.
  • 77. Xu T, Xin M, Li M, Huang H, Zhou S. Synthesis, characteristic and antibacterial activity of N, N, N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydrate Polymers. 2010;81(4):931-936.
  • 78. Ai H, Wang F, Xia Y, Chen X, Lei C. Antioxidant, antifungal and antiviral activities of chitosan from the larvae of housefly, Musca domestica L. Food Chemistry. 2012;132(1):493-498.
  • 79. Bianchera A, Bergonzi C, Bettini R. Controlled local drug delivery strategies from chitosan hydrogels for wound healing. Expert Opinion on Drug Delivery. 2017;14(7):897-908. doi: 10.1080/17425247.2017.1247803.
  • 80. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10(4):462-479. doi: 10.3390/polym10040462.
  • 81. Suh JKF, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review. Biomaterials. 2000;21(24):2589-2598. doi: 10.1016/S0142-9612(00)00126-5.
  • 82. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle S, Illum L. PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science. 2012;37(5):659-685. doi: 10.1016/j.progpolymsci.2011.10.001.
  • 83. Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY. pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Accounts of Chemical Research. 2012;45(4):619-629. doi: 10.1021/ar200234q.
  • 84. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules: 2008;9(7):1837-1842. doi: 10.1021/bm800276d.
  • 85. Grenha A, Al-Qadi S, Seijo B, Remuñán-López C. The potential of chitosan for pulmonary drug delivery. Journal of Drug Delivery Science and Technology. 2010;20(1):33-43. doi: 10.1016/S1773-2247(10)50004-2.
  • 86. Gao W, Zhang Y, Zhang Q, Zhang L. Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Annals of Biomedical Engineering. 2016;44(6):2049-2061. doi: 10.1007/s10439-016-1583-9.
  • 87. Rodríguez-Acosta H, Tapia-Rivera JM, Guerrero-Guzmán A, et al. Chronic wound healing by controlled release of chitosan hydrogels loaded with silver nanoparticles and calendula extract. Journal of Tissue Viability. 2022;31(1):173-179. doi: 10.1016/j.jtv.2021.10.004.
  • 88. Martínez-Higuera A, Rodríguez-Beas C, Villalobos-Noriega JMA, et al. Hydrogel with silver nanoparticles synthesized by Mimosa tenuiflora for second-degree burns treatment. Scientific Reports. 2021;11(1):1-16. doi: 10.1038/s41598-021-90763-w.
  • 89. Ansari MT, Hasnain MS, Nayak AK, Kenawy ER. Chitosan-based nanobiocomposites in drug delivery. In Hasnain MS, Beg S, Nayak AK, eds. Chitosan in Drug Delivery. Academic Press; 2021:411-432. doi: 10.1016/B978-0-12-819336-5.00017-0.
  • 90. Rufato KB, Galdino JP, Ody KS, et al. Hydrogels based on chitosan and chitosan derivatives for biomedical applications. In Popa L, Ghica MV, Dinu-Pirvu CE, eds. Hydrogels - Smart Materials for Biomedical Applications. IntechOpen; 2019. doi:10.5772/intechopen.81811.
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Articles
Authors

Fazilet Canatan Ergün 0000-0003-0379-9033

Meltem Demirel Kars

Project Number 221419008
Early Pub Date August 31, 2024
Publication Date August 31, 2024
Acceptance Date June 25, 2024
Published in Issue Year 2024 Issue: 23

Cite

JAMA Canatan Ergün F, Demirel Kars M. Geç İyileşen Yara ve Enfeksiyon Bölgelerinde Uygulanan Kitosan Temelli Gümüş Nanopartikül ve İlaç İçeren Hidrojel Yara Örtüleri. IGUSABDER. 2024;:901–919.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)