Review
BibTex RIS Cite

Medical Nutrition Therapy and Intestinal Microbiota in Phenylketonuria

Year 2024, Issue: 24, 1347 - 1356, 30.12.2024
https://doi.org/10.38079/igusabder.1425111

Abstract

The healthy intestinal microbiota has crucial effects, such as protection from pathogenic factors and the development of the immune system. The composition, diversity, and functioning of the microorganisms that make up the microbiota, change at short notice with dietary factors. In this respect, medical nutritional therapies applied in congenital metabolic diseases play a crucial role in shaping the intestinal microbiota. These dietary interventions, with their unique macronutrient and micronutrient compositions, interact with the microbiota, modulate immune responses, and alter the protective integrity of the gut epithelial barrier. In phenylketonuria, the most common amino acid metabolism disorder, it is thought that there may be differences in the microbiota due to the phenylalanine-restricted diet therapy that must be applied throughout life, and studies have been carried out on this subject. Studies have concluded that differences in microbial diversity exist in phenylketonuria patients, although it is not yet known whether it is a result of the disease itself or dietary therapy. This review is intended to examine the medical nutritional therapy administered in phenylketonuria and its effects on the intestinal microbiota.

References

  • 1. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;(9750):1417-1427. doi: 10.1016/S0140-6736(10)60961-0.
  • 2. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113 Suppl(Suppl 0):S1-S5. doi: 10.1017/S0007114514004127.
  • 3. Verduci E, Moretti F, Bassanini G, et al. Phenylketonuric diet negatively impacts on butyrate production. Nutr Metab Cardiovasc Dis. 2018;28(4):385-392. doi: 10.1016/j.numecd.2018.01.004.
  • 4. van Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM. Phenylketonuria. Nat Rev Dis Primers. 2021;7(1):36. doi: 10.1038/s41572-021-00267-0.
  • 5. Christ SE. Asbjørn Følling and the discovery of phenylketonuria. J Hist Neurosci. 2003;12(1):44-54. doi: 10.1076/jhin.12.1.44.13788.
  • 6. Ürküt Özdemir P. Akdeniz Üniversitesi Çocuk Metabolizma Polikliniğinde Takip Edilen Fenilketonürili Hastaların Obezite ve İnsülin Direnci Yönüyle İncelenmesi [Uzmanlık Tezi]. Antalya, Türkiye: Akdeniz Üniversitesi;2022.
  • 7. Zhan JY, Qin YF, Zhao ZY. Neonatal screening for congenital hypothyroidism and phenylketonuria in China. World J Pediatr. 2009;5(2):136-139. doi: 10.1007/s12519-009-0027-0.
  • 8. Alptekin İM. Fenilketonüri Hastalarının Beslenme Alışkanlıklarının ve Yaşam Kalitelerinin Değerlendirilmesi [Yüksek Lisans Tezi]. Ankara, Türkiye: Ankara Üniversitesi;2017.
  • 9. Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. Int J Health Sci. 2017;11(5):63-70.
  • 10. Tu WJ, Cai J, Shi XD. Newborn screening for inborn errors of metabolism in Beijing, China: 22 years of experience. J Med Screen. 2011;18(4):213-214. doi: 10.1258/jms.2011.011125.
  • 11. Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet Med. 2014;16(2):188-200. doi: 10.1038/gim.2013.157
  • 12. van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: Diagnosis and therapy. Orphanet J Rare Dis. 2017;12(1):162. doi: 10.1186/s13023-017-0685-2.
  • 13. MacDonald A, van Wegberg AMJ, Ahring K, et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis. 2020;15(1):171. doi: 10.1186/s13023-020-01391-y.
  • 14. Rocha JC, MacDonald A. Dietary intervention in the management of phenylketonuria: Current perspectives. Pediatric Health Med Ther. 2016;7:155-163. doi: 10.2147/PHMT.S49329.
  • 15. Demirkol M, Giżewska M, Giovannini M, Walter J. Follow up of phenylketonuria patients. Mol Genet Metab. 2011;104 Suppl:S31-S39. doi: 10.1016/j.ymgme.2011.08.005
  • 16. Ney DM, Hull AK, van Calcar SC, Liu X, Etzel MR. Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria. J Nutr. 2008;138(2):316-322. doi: 10.1093/jn/138.2.316.
  • 17. Yeşil A. Klasik Fenilketonürili Ergen Hastaların Beslenme Tedavisinde Sebze ve Meyvenin Serbestleştirilmesi [Doktora Tezi]. İstanbul, Türkiye: İstanbul Üniversitesi;2019.
  • 18. Crone MR, van Spronsen FJ, Oudshoorn K, Bekhof J, van Rijn G, Verkerk PH. Behavioural factors related to metabolic control in patients with phenylketonuria. J Inherit Metab Dis. 2005;28(5):627-637. doi: 10.1007/s10545-005-0014-0.
  • 19. Macleod EL, Ney DM. Nutritional management of phenylketonuria. Ann Nestle Eng. 2010;68(2):58-69. doi: 10.1159/000312813
  • 20. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017;8(32):53829-53838. doi: 10.18632/oncotarget.17754.
  • 21. Tarakçı NG. Obez Mikrobiyotaya Sahip Ratlarda Fermente Ürünlerin İntestinal Mikrobiyota, Biyokimyasal Bulgular, Organ Yapı ve Fonksiyonları Üzerine Etkilerinin Belirlenmesi [Doktora Tezi]. İstanbul, Türkiye: Medipol Üniversitesi;2022.
  • 22. Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014;20(41):15163-15176.
  • 23. Lei YM, Nair L, Alegre ML. The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol. 2015;39(1):9-19.
  • 24. Zoetendal EG, de Vos WM. Effect of diet on the intestinal microbiota and its activity. Curr Opin Gastroenterol. 2014;30(2):189-195. doi: 10.1097/MOG.0000000000000048.
  • 25. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29(1):51-58. doi: 10.1016/j.tig.2012.09.005.
  • 26. Huang P, Liu Y. A reasonable diet promotes balance of ıntestinal microbiota: Prevention of precolorectal cancer. Biomed Res Int. 2019;2019:3405278. doi: 10.1155/2019/3405278.
  • 27. Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105.
  • 28. Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: Role of the intestinal microbiota. JAMA Pediatr. 2016;170(8):750-757. doi: 10.1001/jamapediatrics.2016.0585.
  • 29. Brink LR, Mercer KE, Piccolo BD, et al. Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. Am J Clin Nutr. 2020;111(6):1190-1202. doi: 10.1093/ajcn/nqaa076.
  • 30. Fayfman M, Flint K, Srinivasan S. Obesity, motility, diet, and intestinal microbiota-connecting the dots. Curr Gastroenterol Rep. 2019;21(4):15.
  • 31. Da Silva CC, Monteil MA, Davis EM. Overweight and obesity in children are associated with an abundance of firmicutes and reduction of bifidobacterium in their gastrointestinal microbiota. Child Obes. 2020;16(3):204-210. doi: 10.1089/chi.2019.0280.
  • 32. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877-2013. doi: 10.1152/physrev.00018.2018.
  • 33. Reddel S, Putignani L, Del Chierico F. The impact of low-FODMAPs, gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients. 2019;11(2):373. doi: 10.3390/nu11020373.
  • 34. Pinheiro de Oliveira F, Mendes RH, Dobbler PT, et al. Phenylketonuria and gut microbiota: A controlled study based on next-generation sequencing. PLoS One. 2016;11(6):e0157513.
  • 35. Mancilla VJ, Mann AE, Zhang Y, Allen MS. The adult phenylketonuria (PKU) gut microbiome. Microorganisms. 2021;9(3):530. doi: 10.3390/microorganisms9030530.
  • 36. Bassanini G, Ceccarani C, Borgo F, et al. Phenylketonuria diet promotes shifts in firmicutes populations. Front Cell Infect Microbiol. 2019;9:101. doi: 10.3389/fcimb.2019.00101.
  • 37. Su Y, Shadike Q, Wang M, et al. A low abundance of genus bacteroides in gut microbiota is negatively correlated with blood phenylalanine levels in Uygur patients with phenylketonuria. Transl Pediatr. 2021;10(10):2521-2532. doi: 10.21037/tp-21-426.
  • 38. Al-Zyoud W, Nasereddin A, Aljarajrah H, Saket M. Culturable gut bacteria lack Escherichia coli in children with phenylketonuria. New Microbes New Infect. 2019;32:100616. doi: 10.1016/j.nmni.2019.100616.
  • 39. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the therapy of phenylketonuria (PKU); assessment of a novel therapy in vitro and in the PAHenu2 mouse model of PKU. PLoS One. 2017;12(5):e0176286.
  • 40. Montanari C, Ceccarani C, Corsello A, et al. Glycomacropeptide safety and its effect on gut microbiota in patients with phenylketonuria: A pilot study. Nutrients. 2022;14(9):1883.

Fenilketonüride Tıbbi Beslenme Tedavisi ve İntestinal Mikrobiyota

Year 2024, Issue: 24, 1347 - 1356, 30.12.2024
https://doi.org/10.38079/igusabder.1425111

Abstract

Sağlıklı intestinal mikrobiyota, hastalık yapıcı etkenlerden korunma ve bağışıklık sisteminin gelişimi gibi birçok faydalı etkiye sahiptir. Mikrobiyotayı oluşturan mikroorganizmaların bileşimi, çeşitliliği ve işleyişi, diyet faktörü ile kısa sürede değişmektedir. Bu doğrultuda doğumsal metabolizma hastalıklarında uygulanan tıbbi beslenme tedavileri intestinal mikrobiyota için önemli bir etmendir. Bu diyet müdahaleleri sahip olduğu içerik nedeniyle mikrobiyota ile etkileşime girmekte, bağışıklık yanıtını etkilemekte ve bağırsak bariyerinin koruyucu fonksiyonlarında değişikliğe yol açmaktadır. Aminoasit metabolizma bozuklukları içerisinde en sık görülen fenilketonüride, yaşam boyu uygulanması gereken fenilalaninden kısıtlı diyet tedavisi nedeniyle mikrobiyota açısından farklılıklar oluşabileceği düşünülmüş ve bu konuda çalışmalar yapılmıştır. Çalışmalar sonucunda hastalığın kendisinin mi yoksa diyet tedavisinin mi bir sonucu olduğu henüz bilinmese de, fenilketonüri hastalarında mikrobiyal çeşitlilikte azalma ve farklılıklar olduğu sonucuna varılmıştır. Bu derlemede, fenilketonüride uygulanan tıbbi beslenme tedavisinin ve intestinal mikrobiyota üzerine etkilerinin incelenmesi amaçlanmıştır.

References

  • 1. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;(9750):1417-1427. doi: 10.1016/S0140-6736(10)60961-0.
  • 2. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br J Nutr. 2015;113 Suppl(Suppl 0):S1-S5. doi: 10.1017/S0007114514004127.
  • 3. Verduci E, Moretti F, Bassanini G, et al. Phenylketonuric diet negatively impacts on butyrate production. Nutr Metab Cardiovasc Dis. 2018;28(4):385-392. doi: 10.1016/j.numecd.2018.01.004.
  • 4. van Spronsen FJ, Blau N, Harding C, Burlina A, Longo N, Bosch AM. Phenylketonuria. Nat Rev Dis Primers. 2021;7(1):36. doi: 10.1038/s41572-021-00267-0.
  • 5. Christ SE. Asbjørn Følling and the discovery of phenylketonuria. J Hist Neurosci. 2003;12(1):44-54. doi: 10.1076/jhin.12.1.44.13788.
  • 6. Ürküt Özdemir P. Akdeniz Üniversitesi Çocuk Metabolizma Polikliniğinde Takip Edilen Fenilketonürili Hastaların Obezite ve İnsülin Direnci Yönüyle İncelenmesi [Uzmanlık Tezi]. Antalya, Türkiye: Akdeniz Üniversitesi;2022.
  • 7. Zhan JY, Qin YF, Zhao ZY. Neonatal screening for congenital hypothyroidism and phenylketonuria in China. World J Pediatr. 2009;5(2):136-139. doi: 10.1007/s12519-009-0027-0.
  • 8. Alptekin İM. Fenilketonüri Hastalarının Beslenme Alışkanlıklarının ve Yaşam Kalitelerinin Değerlendirilmesi [Yüksek Lisans Tezi]. Ankara, Türkiye: Ankara Üniversitesi;2017.
  • 9. Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. Int J Health Sci. 2017;11(5):63-70.
  • 10. Tu WJ, Cai J, Shi XD. Newborn screening for inborn errors of metabolism in Beijing, China: 22 years of experience. J Med Screen. 2011;18(4):213-214. doi: 10.1258/jms.2011.011125.
  • 11. Vockley J, Andersson HC, Antshel KM, et al. Phenylalanine hydroxylase deficiency: Diagnosis and management guideline. Genet Med. 2014;16(2):188-200. doi: 10.1038/gim.2013.157
  • 12. van Wegberg AMJ, MacDonald A, Ahring K, et al. The complete European guidelines on phenylketonuria: Diagnosis and therapy. Orphanet J Rare Dis. 2017;12(1):162. doi: 10.1186/s13023-017-0685-2.
  • 13. MacDonald A, van Wegberg AMJ, Ahring K, et al. PKU dietary handbook to accompany PKU guidelines. Orphanet J Rare Dis. 2020;15(1):171. doi: 10.1186/s13023-020-01391-y.
  • 14. Rocha JC, MacDonald A. Dietary intervention in the management of phenylketonuria: Current perspectives. Pediatric Health Med Ther. 2016;7:155-163. doi: 10.2147/PHMT.S49329.
  • 15. Demirkol M, Giżewska M, Giovannini M, Walter J. Follow up of phenylketonuria patients. Mol Genet Metab. 2011;104 Suppl:S31-S39. doi: 10.1016/j.ymgme.2011.08.005
  • 16. Ney DM, Hull AK, van Calcar SC, Liu X, Etzel MR. Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria. J Nutr. 2008;138(2):316-322. doi: 10.1093/jn/138.2.316.
  • 17. Yeşil A. Klasik Fenilketonürili Ergen Hastaların Beslenme Tedavisinde Sebze ve Meyvenin Serbestleştirilmesi [Doktora Tezi]. İstanbul, Türkiye: İstanbul Üniversitesi;2019.
  • 18. Crone MR, van Spronsen FJ, Oudshoorn K, Bekhof J, van Rijn G, Verkerk PH. Behavioural factors related to metabolic control in patients with phenylketonuria. J Inherit Metab Dis. 2005;28(5):627-637. doi: 10.1007/s10545-005-0014-0.
  • 19. Macleod EL, Ney DM. Nutritional management of phenylketonuria. Ann Nestle Eng. 2010;68(2):58-69. doi: 10.1159/000312813
  • 20. Zhu X, Han Y, Du J, Liu R, Jin K, Yi W. Microbiota-gut-brain axis and the central nervous system. Oncotarget. 2017;8(32):53829-53838. doi: 10.18632/oncotarget.17754.
  • 21. Tarakçı NG. Obez Mikrobiyotaya Sahip Ratlarda Fermente Ürünlerin İntestinal Mikrobiyota, Biyokimyasal Bulgular, Organ Yapı ve Fonksiyonları Üzerine Etkilerinin Belirlenmesi [Doktora Tezi]. İstanbul, Türkiye: Medipol Üniversitesi;2022.
  • 22. Tojo R, Suárez A, Clemente MG, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World J Gastroenterol. 2014;20(41):15163-15176.
  • 23. Lei YM, Nair L, Alegre ML. The interplay between the intestinal microbiota and the immune system. Clin Res Hepatol Gastroenterol. 2015;39(1):9-19.
  • 24. Zoetendal EG, de Vos WM. Effect of diet on the intestinal microbiota and its activity. Curr Opin Gastroenterol. 2014;30(2):189-195. doi: 10.1097/MOG.0000000000000048.
  • 25. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 2013;29(1):51-58. doi: 10.1016/j.tig.2012.09.005.
  • 26. Huang P, Liu Y. A reasonable diet promotes balance of ıntestinal microbiota: Prevention of precolorectal cancer. Biomed Res Int. 2019;2019:3405278. doi: 10.1155/2019/3405278.
  • 27. Kim S, Covington A, Pamer EG. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279(1):90-105.
  • 28. Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: Role of the intestinal microbiota. JAMA Pediatr. 2016;170(8):750-757. doi: 10.1001/jamapediatrics.2016.0585.
  • 29. Brink LR, Mercer KE, Piccolo BD, et al. Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. Am J Clin Nutr. 2020;111(6):1190-1202. doi: 10.1093/ajcn/nqaa076.
  • 30. Fayfman M, Flint K, Srinivasan S. Obesity, motility, diet, and intestinal microbiota-connecting the dots. Curr Gastroenterol Rep. 2019;21(4):15.
  • 31. Da Silva CC, Monteil MA, Davis EM. Overweight and obesity in children are associated with an abundance of firmicutes and reduction of bifidobacterium in their gastrointestinal microbiota. Child Obes. 2020;16(3):204-210. doi: 10.1089/chi.2019.0280.
  • 32. Cryan JF, O’Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877-2013. doi: 10.1152/physrev.00018.2018.
  • 33. Reddel S, Putignani L, Del Chierico F. The impact of low-FODMAPs, gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients. 2019;11(2):373. doi: 10.3390/nu11020373.
  • 34. Pinheiro de Oliveira F, Mendes RH, Dobbler PT, et al. Phenylketonuria and gut microbiota: A controlled study based on next-generation sequencing. PLoS One. 2016;11(6):e0157513.
  • 35. Mancilla VJ, Mann AE, Zhang Y, Allen MS. The adult phenylketonuria (PKU) gut microbiome. Microorganisms. 2021;9(3):530. doi: 10.3390/microorganisms9030530.
  • 36. Bassanini G, Ceccarani C, Borgo F, et al. Phenylketonuria diet promotes shifts in firmicutes populations. Front Cell Infect Microbiol. 2019;9:101. doi: 10.3389/fcimb.2019.00101.
  • 37. Su Y, Shadike Q, Wang M, et al. A low abundance of genus bacteroides in gut microbiota is negatively correlated with blood phenylalanine levels in Uygur patients with phenylketonuria. Transl Pediatr. 2021;10(10):2521-2532. doi: 10.21037/tp-21-426.
  • 38. Al-Zyoud W, Nasereddin A, Aljarajrah H, Saket M. Culturable gut bacteria lack Escherichia coli in children with phenylketonuria. New Microbes New Infect. 2019;32:100616. doi: 10.1016/j.nmni.2019.100616.
  • 39. Durrer KE, Allen MS, Hunt von Herbing I. Genetically engineered probiotic for the therapy of phenylketonuria (PKU); assessment of a novel therapy in vitro and in the PAHenu2 mouse model of PKU. PLoS One. 2017;12(5):e0176286.
  • 40. Montanari C, Ceccarani C, Corsello A, et al. Glycomacropeptide safety and its effect on gut microbiota in patients with phenylketonuria: A pilot study. Nutrients. 2022;14(9):1883.
There are 40 citations in total.

Details

Primary Language English
Subjects Nutritional Science
Journal Section Articles
Authors

Derya Doğanay 0000-0001-9147-4110

Sevde Nur Olgun Ayazlı 0000-0002-4982-5244

Early Pub Date December 30, 2024
Publication Date December 30, 2024
Submission Date January 26, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2024 Issue: 24

Cite

JAMA Doğanay D, Olgun Ayazlı SN. Medical Nutrition Therapy and Intestinal Microbiota in Phenylketonuria. IGUSABDER. 2024;:1347–1356.

 Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)