Karadeniz Technical University Scientific Research Project Coordination
FYL-2020-8621.
İpek Özpınar
Biomaterials are used in the treatment of advanced orthopedic diseases. Hydroxyapatite (HA), a bioceramic material, is important in the calcium phosphate family. Since hydroxyapatite exhibits low mechanical properties, it is used together with polylactic acid (PLA), which has biodegradable properties. In this study, HA was obtained by the combustion method and its morphological properties were analyzed by scanning electron microscope (SEM) and chemical analyzes by X-ray spectrometry. 3D mechanical test specimens were produced by the Fused Deposition Melting (FDM) technique using PLA-HA composite filaments by using the obtained HA as an additive material. Thermoplastic elastomer was used to examine the effect of compatibilizer in PLA and HA composite materials. Physical (SEM), thermal (thermogravimetric analysis, TGA), and mechanical properties (tensile and compression tests) of PLA-HA composite materials were investigated. According to the results obtained, TPE may have improved the chemical bonds that will form in PLA-HA composite materials. With the new bonds formed and the regular distribution of Hydroxyapatite, the interfacial bonds in PLA+HAP+TPE are better than the others and their thermal stability is more substantial. Due to this thermal stability, at least a percentage weight (70%) loss was seen in PLA+HAP+TPE. When the mechanical properties are examined, the tensile and compressive strength values of PLA+HAP+TPE composites are 29.2% and 12.5% higher than those of PLA+HAP composites, respectively.
FYL-2020-8621.
Primary Language | English |
---|---|
Subjects | Biomaterial |
Journal Section | Research Article |
Authors | |
Project Number | FYL-2020-8621. |
Publication Date | December 31, 2022 |
Submission Date | September 11, 2022 |
Published in Issue | Year 2022 |
Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.