Research Article
BibTex RIS Cite

3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME

Year 2023, , 378 - 387, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1323486

Abstract

Radyoterapide hasta uygulamalarında ‘bolus’ olarak isimlendirilen doku eşdeğeri malzemeler ya da hasta tedavileri öncesi cihaz kalibrasyonunda doku eşdeğeri fantomlar kullanılmaktadır. Ancak ticari olarak satılan bu malzemeler standart boyutlarda üretilerek satışı yapılmakta; farklı dizaynlara duyulan ihtiyacı karşılamamaktadır. Son yıllarda farklı dizaynlarda üretim ihtiyacını karşılamada 3 boyutlu (3B) yazıcılar önemli bir rol üstlenmektedir. Bu çalışmada kullanımı giderek artan 3B yazıcılarda kullanım için üretilmiş PLA (Poliaktik Asit), TPU (Termoplastik Poliüretan) ve Naylon (Polyamide) malzemelerinin radyasyona verdikleri cevabın dozimetrik olarak değerlendirilmesi hedeflenmiştir. BT simülatör cihazında Hounsfiel Unit (HU) değerleri belirlendi. Dozimetrik ölçümler Varian DHX lineer hızlandırıcısında elde edilen 6 MV nominal foton enerjisi kullanılarak yapılmıştır. Yüzde derin doz (%DD) ve doz profili ölçümleri su fantomunda, ışın geçirgenlik ölçümleri katı fantomda yapılmıştır. Malzemelerin ortalama HU yoğunlukları -8.61 ile -441.08 arasında değişmektedir. PLA malzemesi ort. -24.72 ile suyun HU değeri (0)’ ne en yakın sonuçları vermiştir. % derin doz ve penumbra değerleri %2 ve ±2 mm içerisinde bulunmuştur. Tüm malzemelere ait geçirgenlik ölçümleri değerlendirildiğinde RW3 katı su fantomu plakası ile değişimin maksimum % 0.2 olduğu görülmüştür. 3B yazıcıda basılan malzemelerin dozimetrik parametrelerinin birbirlerine benzer sonuçlar verdiği ancak hastada kişisel malzeme olarak kullanılmadan önce basım özellikleri ve malzeme değişkenlikleri sebebiyle kullanılacak malzemenin dozimetrik olarak değerlendirilmesi uygun gözükmektedir.

Supporting Institution

TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU

Project Number

121F335

Thanks

Bu çalışma TÜBİTAK ARDEB 1001 - Bilimsel ve Teknolojik Araştırma Projelerini Destekleme Programı kapsamında desteklenerek gerçekleştirilmiştir.

References

  • 1. Sahin, M. E., “Example of Using 3D Printers in Hospital Biomedical Units”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 6, Issue 2, Pages 322-328, 2022.
  • 2. Akbaba, A. ve Akbulut, E., “3 Boyutlu Yazıcılar ve Kullanım Alanları”, ETÜ Sentez İktisadi ve İdari Bilimler Dergisi. Sayı: 3, Sayfa 19-46, 2021.
  • 3. Paul, GM., Rezaienia, A., Wen, P. et al., “Medical Applications for 3D Printing: Recent Developments”, Mo Med., Vol. 115, Issue 1, Pages75-81, 2018.
  • 4. Kim, GB., Lee, S., Kim, H. et al., “Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology”, Korean J Radiol., Vol. 17, Issue 2, Pages 182-197, 2016.
  • 5. Leary, M., Kron, T., Keller, C. et. al., “Additive manufacture of custom radiation dosimetry phantoms: an automated method compatible with commercial polymer 3D printers”, Vol. 86, Issue 5, Pages 487-499, 2015.
  • 6. Biltekin, F., Yazici, G. ve Ozyigit, G., “Characterization of 3D-printed bolus produced at different printing parameters”, Medical dosimetry: official journal of the American Association of Medical Dosimetrists, Vol. 46, Issue 2, Pages 157–163, 2021.
  • 7. Rooney, M.K., Rosenberg, D.M., Braunstein, S.E. et al., “Three‐dimensional printing in radiation oncology: A systematic review of the literatüre”, Journal of Applied Clinical Medical Physics, Vol. 21, Pages 15 – 26, 2020.
  • 8.Wang, X., Xiang, Z., Zeng, Y., et.al., “The Clinical Application of 3D-Printed Boluses in Superficial Tumor Radiotherapy”, Front Oncol., Vol. 11, Issue 698773, 2020.
  • 9. Baltz, GC., Chi, PM, Wong PF, et al., “Development and validation of a 3D-printed bolus cap for total scalp irradiation”, J Appl Clin Med Phys., Vol. 20, Issue 3, Pages 89-96, 2019.
  • 10. Bulanda, K., Oleksy, M., Oliwa, R. et al., “Biodegradable polymer composites based on polylactide used in selected 3D Technologies”, Polimery, Vol. 65, Issue 7-8, Pages 557-562, 2020.
  • 11. Shahrubudin, N., Lee TC., Ramlan, R., “An Overview on 3D Printing Technology: Technological, Materials, and Applications”, Procedia Manufacturing, Vol.35, Pages 1286-1296, 2019.
  • 12. Rodríguez, L., Naya, G., Bienvenido, R. “Study for the selection of 3D printing parameters for the design of TPU products”,IOP Conf. Ser.: Mater. Sci. Eng. , Vol. 1193, 2021.
  • 13. Dancewicz, O. L., Sylvander, S. R., Markwell, T. S. . et al., “ Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams”, Physica Medica, Vol. 38, Issue 111-118. 2017.
  • 14. Shamsabadi R. “3D-Printing Advances in Radiotherapy. Advances in 3D Printing”. IntechOpen, 2023.
  • 15. Dyer, B. A., Campos, D. D., Hernandez, D. D., et al., “Characterization and clinical validation of patient-specific three-dimensional printed tissue-equivalent bolus for radiotherapy of head and neck malignancies involving skin”. Physica Medica, Vol. 77, Pages 138-145, 2020.
  • 16. Ricotti, R., Ciardo, D., Pansini, F., et al., “Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy”, Physica Medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), Vol.39, Pages 25–32, 2017.
  • 17. www.ultimaker.com" . Ultimaker. Erişim Tarihi: Haziran 22, 2023
  • 18. Nhila, O., Talbi, M., El Mansouri, M. et al., “Evaluation of CT Acquisition Protocols Effect on Hounsfield Units and Optimization of CT-RED Calibration Curve Selection in Radiotherapy Treatment Planning Systems”, Moscow Univ. Phys., Vol.77. Pages 661–67, 2022.
  • 19. Mahur, M., Gurjar, O. P., Grover, R., et al., “Evaluation of Effect of Different Computed Tomography Scanning Protocols on Hounsfield Unit and Its Impact on Dose Calculation by Treatment Planning System”, Iranian Journal of Medical Physics, Vol. 14, Issue 3, Pages 149-154, 2017.
  • 20. Özsoykal I., Hüsemoğlu R.B., Yurt A., “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”, Journal of Medical Innovation and Technology, Vol. 3, Issue 2, Pages 28-34, 2021.
  • 21. Burleson S, Baker J, Hsia AT, Xu Z. “Use of 3D printers to create a patient-specific 3D bolus for external beam therapy”, J Appl Clin Med Phys, Vol. 16, Issue 3, Pages 5247, 2015.
  • 22. Fischbach, M., Hälg, R.A., Hartmann, M. et al. “Measurement of skin and target dose in post-mastectomy radiotherapy using 4 and 6 MV photon beams”, Radiat Oncol, Vol. 8, Pages 270, 2013.
  • 23. Diaz-Merchan, J.A., Español-Castro, C., Martinez-Ovalle, S.A. & Vega-Carrillo, H.R., “Bolus 3D printing for radiotherapy with conventional PLA, ABS and TPU filaments: Theoretical-experimental study”, Applied Radiation and Isotopes, Vol. 199, Issue 110908, 2023.
  • 24. Kesen, N., Koksal, C. “Investigation of surface and buildup region doses for 6 MV high energy photon beams in the presence of a thermoplastic mask”, Int J Radiat Res, Vol. 18 Issue 4, Pages 623-631, 2020.
  • 25. Jiang, D., Cao, Z., Wei, Y. et al. “Radiation dosimetry effect evaluation of a carbon fiber couch on novel uRT-linac 506c accelerator”, Sci Rep, Vol. 11, Issue 13504, 2021.
  • 26. Klein, EE., Hanley, J., Bayouth, J., et al. “Task Group 142 report: quality assurance of medical accelerators”, Med Phys., Vol. 36, Issue 4197, 2009.
  • 27. Kim, SW., Shin, HJ., Kay, CS. & Son, SH. “A customized bolus produced using a 3-dimensional printer for radiotherapy”, PLoS One, Vol. 9, Issue 10, Pages e110746, 2014.

USAGE OF 3D PRINTER MATERIALS IN RADIOTHERAPY: DOSIMETRIC EVALUATION

Year 2023, , 378 - 387, 31.12.2023
https://doi.org/10.46519/ij3dptdi.1323486

Abstract

In radiotherapy, tissue-equivalent materials called 'bolus' are used in patient applications or tissue-equivalent phantoms are used in device calibration before patient treatments. However, these commercial materials are manufactured and sold in standard sizes, they cannot meet diverse design needs. In recent years, 3D printers play an important role in meeting the production needs of different designs. In this study, it was aimed to dosimetrically evaluate the response of PLA (Polylactic Acid), TPU (Thermoplastic Polyurethane), and Nylon (Polyamide) materials produced for use in 3D (3D) printers, which are increasingly used. Hounsfield Unit (HU) values were determined on the CT simulator device. Dosimetric measurements were made using the 6 MV nominal photon energy obtained in the Varian DHX linear accelerator. Percent depth dose (%DD) and dose profile measurements were made with water phantom, and transmittance measurements were made with solid phantom. The average HU densities of the materials vary between -8.61 and -441.08. The PLA material gave the closest results to the HU value of water, with an average value of -24.72 HU. % depth and penumbra values were found as within 2% and ±2 mm. When the permeability measurements of all materials were evaluated, it was observed that the change with the RW3 plate was 0.2% maximum. The dosimetric parameters of the materials printed in the 3D printer give similar results, but it seems appropriate to evaluate the material to be used dosimetrically due to the printing properties and material variability before using it as a patient personalization materials.

Project Number

121F335

References

  • 1. Sahin, M. E., “Example of Using 3D Printers in Hospital Biomedical Units”, Int. J. of 3D Printing Tech. Dig. Ind., Vol. 6, Issue 2, Pages 322-328, 2022.
  • 2. Akbaba, A. ve Akbulut, E., “3 Boyutlu Yazıcılar ve Kullanım Alanları”, ETÜ Sentez İktisadi ve İdari Bilimler Dergisi. Sayı: 3, Sayfa 19-46, 2021.
  • 3. Paul, GM., Rezaienia, A., Wen, P. et al., “Medical Applications for 3D Printing: Recent Developments”, Mo Med., Vol. 115, Issue 1, Pages75-81, 2018.
  • 4. Kim, GB., Lee, S., Kim, H. et al., “Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology”, Korean J Radiol., Vol. 17, Issue 2, Pages 182-197, 2016.
  • 5. Leary, M., Kron, T., Keller, C. et. al., “Additive manufacture of custom radiation dosimetry phantoms: an automated method compatible with commercial polymer 3D printers”, Vol. 86, Issue 5, Pages 487-499, 2015.
  • 6. Biltekin, F., Yazici, G. ve Ozyigit, G., “Characterization of 3D-printed bolus produced at different printing parameters”, Medical dosimetry: official journal of the American Association of Medical Dosimetrists, Vol. 46, Issue 2, Pages 157–163, 2021.
  • 7. Rooney, M.K., Rosenberg, D.M., Braunstein, S.E. et al., “Three‐dimensional printing in radiation oncology: A systematic review of the literatüre”, Journal of Applied Clinical Medical Physics, Vol. 21, Pages 15 – 26, 2020.
  • 8.Wang, X., Xiang, Z., Zeng, Y., et.al., “The Clinical Application of 3D-Printed Boluses in Superficial Tumor Radiotherapy”, Front Oncol., Vol. 11, Issue 698773, 2020.
  • 9. Baltz, GC., Chi, PM, Wong PF, et al., “Development and validation of a 3D-printed bolus cap for total scalp irradiation”, J Appl Clin Med Phys., Vol. 20, Issue 3, Pages 89-96, 2019.
  • 10. Bulanda, K., Oleksy, M., Oliwa, R. et al., “Biodegradable polymer composites based on polylactide used in selected 3D Technologies”, Polimery, Vol. 65, Issue 7-8, Pages 557-562, 2020.
  • 11. Shahrubudin, N., Lee TC., Ramlan, R., “An Overview on 3D Printing Technology: Technological, Materials, and Applications”, Procedia Manufacturing, Vol.35, Pages 1286-1296, 2019.
  • 12. Rodríguez, L., Naya, G., Bienvenido, R. “Study for the selection of 3D printing parameters for the design of TPU products”,IOP Conf. Ser.: Mater. Sci. Eng. , Vol. 1193, 2021.
  • 13. Dancewicz, O. L., Sylvander, S. R., Markwell, T. S. . et al., “ Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams”, Physica Medica, Vol. 38, Issue 111-118. 2017.
  • 14. Shamsabadi R. “3D-Printing Advances in Radiotherapy. Advances in 3D Printing”. IntechOpen, 2023.
  • 15. Dyer, B. A., Campos, D. D., Hernandez, D. D., et al., “Characterization and clinical validation of patient-specific three-dimensional printed tissue-equivalent bolus for radiotherapy of head and neck malignancies involving skin”. Physica Medica, Vol. 77, Pages 138-145, 2020.
  • 16. Ricotti, R., Ciardo, D., Pansini, F., et al., “Dosimetric characterization of 3D printed bolus at different infill percentage for external photon beam radiotherapy”, Physica Medica: PM: an international journal devoted to the applications of physics to medicine and biology: official journal of the Italian Association of Biomedical Physics (AIFB), Vol.39, Pages 25–32, 2017.
  • 17. www.ultimaker.com" . Ultimaker. Erişim Tarihi: Haziran 22, 2023
  • 18. Nhila, O., Talbi, M., El Mansouri, M. et al., “Evaluation of CT Acquisition Protocols Effect on Hounsfield Units and Optimization of CT-RED Calibration Curve Selection in Radiotherapy Treatment Planning Systems”, Moscow Univ. Phys., Vol.77. Pages 661–67, 2022.
  • 19. Mahur, M., Gurjar, O. P., Grover, R., et al., “Evaluation of Effect of Different Computed Tomography Scanning Protocols on Hounsfield Unit and Its Impact on Dose Calculation by Treatment Planning System”, Iranian Journal of Medical Physics, Vol. 14, Issue 3, Pages 149-154, 2017.
  • 20. Özsoykal I., Hüsemoğlu R.B., Yurt A., “Radiological Evaluation of the Effects of Printing Parameters on 3D Printed Cylindrical LW-PLA Samples: Preliminary Results”, Journal of Medical Innovation and Technology, Vol. 3, Issue 2, Pages 28-34, 2021.
  • 21. Burleson S, Baker J, Hsia AT, Xu Z. “Use of 3D printers to create a patient-specific 3D bolus for external beam therapy”, J Appl Clin Med Phys, Vol. 16, Issue 3, Pages 5247, 2015.
  • 22. Fischbach, M., Hälg, R.A., Hartmann, M. et al. “Measurement of skin and target dose in post-mastectomy radiotherapy using 4 and 6 MV photon beams”, Radiat Oncol, Vol. 8, Pages 270, 2013.
  • 23. Diaz-Merchan, J.A., Español-Castro, C., Martinez-Ovalle, S.A. & Vega-Carrillo, H.R., “Bolus 3D printing for radiotherapy with conventional PLA, ABS and TPU filaments: Theoretical-experimental study”, Applied Radiation and Isotopes, Vol. 199, Issue 110908, 2023.
  • 24. Kesen, N., Koksal, C. “Investigation of surface and buildup region doses for 6 MV high energy photon beams in the presence of a thermoplastic mask”, Int J Radiat Res, Vol. 18 Issue 4, Pages 623-631, 2020.
  • 25. Jiang, D., Cao, Z., Wei, Y. et al. “Radiation dosimetry effect evaluation of a carbon fiber couch on novel uRT-linac 506c accelerator”, Sci Rep, Vol. 11, Issue 13504, 2021.
  • 26. Klein, EE., Hanley, J., Bayouth, J., et al. “Task Group 142 report: quality assurance of medical accelerators”, Med Phys., Vol. 36, Issue 4197, 2009.
  • 27. Kim, SW., Shin, HJ., Kay, CS. & Son, SH. “A customized bolus produced using a 3-dimensional printer for radiotherapy”, PLoS One, Vol. 9, Issue 10, Pages e110746, 2014.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Manufacturing and Industrial Engineering (Other)
Journal Section Research Article
Authors

Songül Karaçam 0000-0002-0904-489X

Duygu Tunçman 0000-0002-0929-0441

Meltem Dağdelen 0000-0002-2009-0002

Ömer Erol Uzel 0000-0002-8002-1420

Project Number 121F335
Early Pub Date December 25, 2023
Publication Date December 31, 2023
Submission Date July 6, 2023
Published in Issue Year 2023

Cite

APA Karaçam, S., Tunçman, D., Dağdelen, M., Uzel, Ö. E. (2023). 3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME. International Journal of 3D Printing Technologies and Digital Industry, 7(3), 378-387. https://doi.org/10.46519/ij3dptdi.1323486
AMA Karaçam S, Tunçman D, Dağdelen M, Uzel ÖE. 3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME. IJ3DPTDI. December 2023;7(3):378-387. doi:10.46519/ij3dptdi.1323486
Chicago Karaçam, Songül, Duygu Tunçman, Meltem Dağdelen, and Ömer Erol Uzel. “3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME”. International Journal of 3D Printing Technologies and Digital Industry 7, no. 3 (December 2023): 378-87. https://doi.org/10.46519/ij3dptdi.1323486.
EndNote Karaçam S, Tunçman D, Dağdelen M, Uzel ÖE (December 1, 2023) 3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME. International Journal of 3D Printing Technologies and Digital Industry 7 3 378–387.
IEEE S. Karaçam, D. Tunçman, M. Dağdelen, and Ö. E. Uzel, “3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME”, IJ3DPTDI, vol. 7, no. 3, pp. 378–387, 2023, doi: 10.46519/ij3dptdi.1323486.
ISNAD Karaçam, Songül et al. “3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME”. International Journal of 3D Printing Technologies and Digital Industry 7/3 (December 2023), 378-387. https://doi.org/10.46519/ij3dptdi.1323486.
JAMA Karaçam S, Tunçman D, Dağdelen M, Uzel ÖE. 3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME. IJ3DPTDI. 2023;7:378–387.
MLA Karaçam, Songül et al. “3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME”. International Journal of 3D Printing Technologies and Digital Industry, vol. 7, no. 3, 2023, pp. 378-87, doi:10.46519/ij3dptdi.1323486.
Vancouver Karaçam S, Tunçman D, Dağdelen M, Uzel ÖE. 3B YAZICI MALZEMELERİNİN RADYOTERAPİDE KULLANIMI: DOZİMETRİK DEĞERLENDİRME. IJ3DPTDI. 2023;7(3):378-87.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.