Research Article
BibTex RIS Cite

PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER

Year 2018, Volume: 2 Issue: 2, 37 - 45, 27.07.2018

Abstract

Hallux valgus is a disease
affecting the joint between the toe and the metacarpus to which the finger is
attached. As a result of the angulation of the big toe, the joint with the
metacarpus is pushed and a fluid retention occurs. This disease is rarely seen
in societies without a shoe wearing habit, but it is likely to be seen in women
wearing heels and narrow-nosed shoes. Splint, exercise and joint mobilization
are applied in patients with hallux valgus that have not reached the surgical
level. While it is sufficient for the patient to perform 2-3 sessions a day for
exercise and joint mobilization, the patient has to use the splint during out
of the period that covers his / her personal care needs. Splits in the market
are produced in standard sizes. In the production of standard splints,
parameters such as patient's foot size, hallux valgus grade, finger thickness
and length, gender and age are not considered. Therefore, since the splints
produced are not specific to the person, a desire to use them permanently does
not come out for the users. This has an adverse effect on the healing process
of the disease.

 In
this study, a software was developed to create a splint model based on patient
parameters in WPF (Windows Presentation Foundation) platform. By entering
parameters to the software such as patient's foot size, hallux valgus grade,
finger thickness and length, creation of a personally customized splint design
is provided. A standard splint model, which was previously designed in the 3D
MAX program, is installed in the software. Later, according to the entered parameters
of the patient, the splint is formed as customized for the individual. Thus,
the patient's discomfort arising from the use of the splint disappears. Along
with the continuous and regular use of splints, however, it appears that the
healing process runs faster.

 A
custom-designed splint and a splint produced by different techniques were
compared in terms of production technique, material, cost and duration.
According to this comparison, a custom splint produced by 3D printer provides
advantages in terms of cost and production time. However, it seems that it does
not have any advantage in terms of material and production techniques used.

References

  • [1]. Çelik, D., & Çetinkaya, K. (2016). Üç Boyutlu Yazıcı Tasarımları Prototipleri ve Ürün Yazdırma Karşılaştırmaları, İleri Teknoloji Bilimleri Dergisi, 5(2).
  • [2]. Berman, B., Zarb, F. G., & Hall, W. (2012). 3-D printing : The new industrial revolution. Business Horizons, 55(2), 155–162. https://doi.org/10.1016/j.bushor.2011.11.003
  • [3]. 3DPI. (2014). The Free Beginner’s Guide to 3D Printing. https://doi.org/10.1038/nature14015
  • [4]. He, Y., Qiu, J., Fu, J., Zhang, J., Ren, Y., & Liu, A. (2015). Printing 3D microfluidic chips with a 3D sugar printer. Microfluidics and Nanofluidics, 19(2), 447–456. https://doi.org/10.1007/s10404-015-1571-7
  • [5]. Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • [6]. Petrick, I. J., & Simpson, T. W. (2013). 3D Printing Disrupts Manufacturing. Research Technology Management, 56(6), 12–16. https://doi.org/10.5437/08956308X5606193
  • [7]. Mitsuhashi, K., Ohyama, Y., Hashimoto, H., & Ishijima, S. (2015). Production and education of the modular robot made by 3D printer. In 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. https://doi.org/10.1109/ASCC.2015.7244431Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.01.025
  • [8]. Roger, A. (1980). Hallux Valgus-Etiology, Anatomy, Treatment and Surgical Considerations. Lippincott.
  • [9]. Valgus, H. (1979). The Etiology of Hallux Valgus in Japan, 78–81.
  • [10]. Garrow, A. P., Papageorgiou, A., Silman, A. J., Thomas, E., Jayson, M. I. V, & Macfarlane, G. J. (2001). The Grading of Hallux Valgus The Manchester Scale, 74–78.
  • [11]. Freund, E. (2001). Roger A . Mann Award, 369–379.
  • [12]. Trnka, H. J. (2005). Osteotomies for hallux valgus correction. Foot and Ankle Clinics, 10(1), 15–33. https://doi.org/10.1016/j.fcl.2004.10.002
  • [13]. Glasoe, W. M., Nuckley, D. J., & Ludewig, P. M. (2010). Hallux Valgus and the First Metatarsal Arch Segment: A Theoretical Biomechanical Perspective. Physical Therapy, 90(1), 110–120. https://doi.org/10.2522/ptj.20080298
  • [14]. Kılıçoğlu, Ö., Ayak başparmağının hastalıkları :Halluks valgus ve halluks rigidus. TOTBİD (Türk Ortopedi ve Travmatoloji Birliği Derneği) Dergisi (2014),(February). https://doi.org/10.14292/totbid.dergisi.2013.48
  • [15]. Bryant, A., Tinley, P., & Singer, K. (2000). Radiographic measurements and plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot, 10(1), 18–22. https://doi.org/10.1054/foot.2000.0581
  • [16]. Lew, R., Boring, R. L., & Ulrich, T. A. (2014). A Prototyping Environment for Research on Human- Machine Interfaces in Process Control Use of Microsoft WPF for Microworld and Distributed Control System Development.
  • [17]. Kr, H., Janckulik, D., & Motalova, L. (2010). Real Time Processing of ECG Signal on Mobile Embedded Monitoring Stations, (January). https://doi.org/10.1109/ICCEA.2010.177
  • [18]. Mészáros, T. (2008). A flexible , declarative Presentation Framework for Domain-Specific Modeling A Flexible , Declarative Presentation Framework for Domain-Specific Modelıng, (December 2014). https://doi.org/10.1145/1385569.1385620
  • [19]. Roman, D. (2009). Cartographic objects visualization using WPF. GEO: Connexion, 8(5), 40–43.
  • [20]. Duman, B., & Kayacan, M., C., (2016). Eklemeli imalatta kullanılan STL dosyalarının hataları ve onarım yöntemleri, 3Boyutlu Baskı Teknolojileri Sempozyumu, 19.
  • [21]. Kai, C.C., Jacob, G.G.K., Mei, T., (1997) Interface Between CAD and Rapid Prototyping Systems Part 1: A Study of Existing Interfaces. International Journal of Advanced Manufacturing Technology, vol.13,pp. 566-570.
  • [22]. Wang, W., Chao, H., Tong, J., Yang, Z., Tong, X., Li, H., Liu, L. (2015). Saliency-Preserving Slicing Optimization for Effective 3D Printing. Computer Graphics Forum, 34(6), 148–160. https://doi.org/10.1111/cgf.12527
  • [23]. 20Naftulin, J. S., Kimchi, E. Y., & Cash, S. S. (2015). Streamlined, inexpensive 3D printing of the brain and skull. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136198
Year 2018, Volume: 2 Issue: 2, 37 - 45, 27.07.2018

Abstract

References

  • [1]. Çelik, D., & Çetinkaya, K. (2016). Üç Boyutlu Yazıcı Tasarımları Prototipleri ve Ürün Yazdırma Karşılaştırmaları, İleri Teknoloji Bilimleri Dergisi, 5(2).
  • [2]. Berman, B., Zarb, F. G., & Hall, W. (2012). 3-D printing : The new industrial revolution. Business Horizons, 55(2), 155–162. https://doi.org/10.1016/j.bushor.2011.11.003
  • [3]. 3DPI. (2014). The Free Beginner’s Guide to 3D Printing. https://doi.org/10.1038/nature14015
  • [4]. He, Y., Qiu, J., Fu, J., Zhang, J., Ren, Y., & Liu, A. (2015). Printing 3D microfluidic chips with a 3D sugar printer. Microfluidics and Nanofluidics, 19(2), 447–456. https://doi.org/10.1007/s10404-015-1571-7
  • [5]. Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.01.025.
  • [6]. Petrick, I. J., & Simpson, T. W. (2013). 3D Printing Disrupts Manufacturing. Research Technology Management, 56(6), 12–16. https://doi.org/10.5437/08956308X5606193
  • [7]. Mitsuhashi, K., Ohyama, Y., Hashimoto, H., & Ishijima, S. (2015). Production and education of the modular robot made by 3D printer. In 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. https://doi.org/10.1109/ASCC.2015.7244431Godoi, F. C., Prakash, S., & Bhandari, B. R. (2016). 3d printing technologies applied for food design: Status and prospects. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2016.01.025
  • [8]. Roger, A. (1980). Hallux Valgus-Etiology, Anatomy, Treatment and Surgical Considerations. Lippincott.
  • [9]. Valgus, H. (1979). The Etiology of Hallux Valgus in Japan, 78–81.
  • [10]. Garrow, A. P., Papageorgiou, A., Silman, A. J., Thomas, E., Jayson, M. I. V, & Macfarlane, G. J. (2001). The Grading of Hallux Valgus The Manchester Scale, 74–78.
  • [11]. Freund, E. (2001). Roger A . Mann Award, 369–379.
  • [12]. Trnka, H. J. (2005). Osteotomies for hallux valgus correction. Foot and Ankle Clinics, 10(1), 15–33. https://doi.org/10.1016/j.fcl.2004.10.002
  • [13]. Glasoe, W. M., Nuckley, D. J., & Ludewig, P. M. (2010). Hallux Valgus and the First Metatarsal Arch Segment: A Theoretical Biomechanical Perspective. Physical Therapy, 90(1), 110–120. https://doi.org/10.2522/ptj.20080298
  • [14]. Kılıçoğlu, Ö., Ayak başparmağının hastalıkları :Halluks valgus ve halluks rigidus. TOTBİD (Türk Ortopedi ve Travmatoloji Birliği Derneği) Dergisi (2014),(February). https://doi.org/10.14292/totbid.dergisi.2013.48
  • [15]. Bryant, A., Tinley, P., & Singer, K. (2000). Radiographic measurements and plantar pressure distribution in normal, hallux valgus and hallux limitus feet. Foot, 10(1), 18–22. https://doi.org/10.1054/foot.2000.0581
  • [16]. Lew, R., Boring, R. L., & Ulrich, T. A. (2014). A Prototyping Environment for Research on Human- Machine Interfaces in Process Control Use of Microsoft WPF for Microworld and Distributed Control System Development.
  • [17]. Kr, H., Janckulik, D., & Motalova, L. (2010). Real Time Processing of ECG Signal on Mobile Embedded Monitoring Stations, (January). https://doi.org/10.1109/ICCEA.2010.177
  • [18]. Mészáros, T. (2008). A flexible , declarative Presentation Framework for Domain-Specific Modeling A Flexible , Declarative Presentation Framework for Domain-Specific Modelıng, (December 2014). https://doi.org/10.1145/1385569.1385620
  • [19]. Roman, D. (2009). Cartographic objects visualization using WPF. GEO: Connexion, 8(5), 40–43.
  • [20]. Duman, B., & Kayacan, M., C., (2016). Eklemeli imalatta kullanılan STL dosyalarının hataları ve onarım yöntemleri, 3Boyutlu Baskı Teknolojileri Sempozyumu, 19.
  • [21]. Kai, C.C., Jacob, G.G.K., Mei, T., (1997) Interface Between CAD and Rapid Prototyping Systems Part 1: A Study of Existing Interfaces. International Journal of Advanced Manufacturing Technology, vol.13,pp. 566-570.
  • [22]. Wang, W., Chao, H., Tong, J., Yang, Z., Tong, X., Li, H., Liu, L. (2015). Saliency-Preserving Slicing Optimization for Effective 3D Printing. Computer Graphics Forum, 34(6), 148–160. https://doi.org/10.1111/cgf.12527
  • [23]. 20Naftulin, J. S., Kimchi, E. Y., & Cash, S. S. (2015). Streamlined, inexpensive 3D printing of the brain and skull. PLoS ONE, 10(8). https://doi.org/10.1371/journal.pone.0136198
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Ali Süzen

Ziya Yıldız This is me

Kıyas Kayaalp This is me

Osman Ceylan This is me

Publication Date July 27, 2018
Submission Date May 3, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Süzen, A. A., Yıldız, Z., Kayaalp, K., Ceylan, O. (2018). PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 37-45.
AMA Süzen AA, Yıldız Z, Kayaalp K, Ceylan O. PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER. IJ3DPTDI. July 2018;2(2):37-45.
Chicago Süzen, Ahmet Ali, Ziya Yıldız, Kıyas Kayaalp, and Osman Ceylan. “PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry 2, no. 2 (July 2018): 37-45.
EndNote Süzen AA, Yıldız Z, Kayaalp K, Ceylan O (July 1, 2018) PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER. International Journal of 3D Printing Technologies and Digital Industry 2 2 37–45.
IEEE A. A. Süzen, Z. Yıldız, K. Kayaalp, and O. Ceylan, “PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER”, IJ3DPTDI, vol. 2, no. 2, pp. 37–45, 2018.
ISNAD Süzen, Ahmet Ali et al. “PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry 2/2 (July 2018), 37-45.
JAMA Süzen AA, Yıldız Z, Kayaalp K, Ceylan O. PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER. IJ3DPTDI. 2018;2:37–45.
MLA Süzen, Ahmet Ali et al. “PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER”. International Journal of 3D Printing Technologies and Digital Industry, vol. 2, no. 2, 2018, pp. 37-45.
Vancouver Süzen AA, Yıldız Z, Kayaalp K, Ceylan O. PERSONAL CUSTOM HALLUX VALGUS SPLINT DESIGN FOR 3D PRINTER. IJ3DPTDI. 2018;2(2):37-45.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı