Derleme
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 5 Sayı: 2, 339 - 352, 31.08.2021
https://doi.org/10.46519/ij3dptdi.838281

Öz

Kaynakça

  • 1. Daminabo, S., et al., Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. 2020. 16: p. 100248.
  • 2. Jiang, J., et al., Effect of support on printed properties in fused deposition modelling processes. 2019. 14(4): p. 308-315.
  • 3. Najmon, J.C., S. Raeisi, and A. Tovar, Review of additive manufacturing technologies and applications in the aerospace industry, in Additive manufacturing for the aerospace industry. 2019, Elsevier. p. 7-31.
  • 4. Singh, S. and R.J.R.P.J. Singh, Fused deposition modelling based rapid patterns for investment casting applications: a review. 2016.
  • 5. Durgun, I.J.R.P.J., Sheet metal forming using FDM rapid prototype tool. 2015.
  • 6. Başcı, Ü.G. and Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri İçin Metal Tozu Üretim Yöntemleri in International Maramara Sciences Congress. 2019. p. 219-227.
  • 7. Tofail, S.A., et al., Additive manufacturing: scientific and technological challenges, market uptake and opportunities. 2018. 21(1): p. 22-37.
  • 8. Sathies, T., P. Senthil, and M.J.R.P.J. Anoop, A review on advancements in applications of fused deposition modelling process. 2020.
  • 9. Gasman, L., Additive aerospace considered as a business, in Additive Manufacturing for the Aerospace Industry. 2019, Elsevier. p. 327-340.
  • 10. Wiese, M., S. Thiede, and C.J.A.M. Herrmann, Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. 2020: p. 101582.
  • 11. Smith, M.L. and J.F.J.A.s.e. Jones, Dual‐extrusion 3D printing of anatomical models for education. 2018. 11(1): p. 65-72.
  • 12. Ngo, T.D., et al., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. 2018. 143: p. 172-196.
  • 13. Dizon, J.R.C., et al., Mechanical characterization of 3D-printed polymers. 2018. 20: p. 44-67.
  • 14. Das, A., et al., Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. 2020: p. 101218.
  • 15. Corcione, C.E., et al., Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. 2019. 45(2): p. 2803-2810.
  • 16. Balletti, C., M. Ballarin, and F.J.J.o.C.H. Guerra, 3D printing: State of the art and future perspectives. 2017. 26: p. 172-182.
  • 17. 52900:2017, E.I.A., Additive Manufacturing, in General Principles-Terminology. 2017.
  • 18. Başcı U.G., Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri Ve Uygulama Alanları, in International Maramara Sciences Congress. 2020. p. 307-314.
  • 19. Material Extrusion, in Design for Additive Manufacturing, M. Leary, Editor. 2020, Elsevier. p. 223-268.
  • 20. Chohan, J.S. and R.J.R.P.J. Singh, Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. 2017.
  • 21. Lalehpour, A., C. Janeteas, and A.J.T.I.J.o.A.M.T. Barari, Surface roughness of FDM parts after post-processing with acetone vapor bath smoothing process. 2018. 95(1-4): p. 1505-1520.
  • 22. Kuo, C.C.J.M.u.W., Fabrication of modeling platform for fused deposition modeling using vacuum casting. 2013. 44(11): p. 922-926.
  • 23. Lee, C., et al., Rapid investment casting: direct and indirect approaches via fused deposition modelling. 2004. 23(1-2): p. 93-101.
  • 24. Chua, C.K., C.H. Wong, and W.Y. Yeong, Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. 2017: Academic Press.
  • 25. Long, J., et al., Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. 2017. 23(3): p. 433-439.
  • 26. Chakraborty, S. and M.C.J.C.S. Biswas, 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer. 2020: p. 112562.
  • 27. Sun, L.J.L.M. and T.D.f. Activewear, and challenges. 2020: p. 139.
  • 28. Szulżyk-Cieplak, J., et al., 3D printers–new possibilities in education. 2014. 8(24): p. 96--101.
  • 29. Torres, K., et al., Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. 2011. 70(1): p. 1-4.

YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT

Yıl 2021, Cilt: 5 Sayı: 2, 339 - 352, 31.08.2021
https://doi.org/10.46519/ij3dptdi.838281

Öz

Eklemeli imalat geleneksel malzeme üretim tekniklerine göre sahip olduğu birçok avantaj nedeniyle son yıllarda hızlı bir şekilde yaygınlaşmaktadır. Bu avantajlardan bazıları, kalıba gerek kalmadan üretime izin vermesi, gerektiği kadar hammadde kullanılması, kişiye özgü ürün üretimi ve stok maliyetlerinin azaltılmasıdır. ISO/ASTM 52900 standardına göre yedi farklı eklemeli imalat teknolojisi mevcuttur. Eklemeli imalat teknolojilerinde metal, polimer, seramik ve mum olmak üzere bu yedi teknolojiye uygun olarak geliştirilmiş malzemeler kullanılabilmektedir. Polimer esaslı malzemeler söz konusu olduğunda malzeme ekstrüzyonu eklemeli imalat teknolojileri arasında en fazla kullanılandır. Malzeme ekstrüzyonu ticari olarak Fused Depositin Modelling (FDM) ve Fused Filament Fabrication (FFF) olarak adlandırılmaktadır. FDM teknolojisi başta hızlı prototipleme ve ürün geliştirme alanlarında olmak üzere, havacılık, otomotiv, beyaz eşya, tekstil, sağlık ve eğitim sektörlerinde yaygın olarak kullanılmaktadır. Özellikle ABS ve PLA gibi polimer malzemelerin yanında PEKK, PEI ve PPSU gibi polimerlerin de kullanımına izin vermesi nedeniyle FDM teknolojisi üstün özelliklerin tercih edildiği endüstriyel alanlarda da kullanılabilmektedir. Bu çalışmada endüstride kullanımı hızla yaygınlaşmakta olan FDM teknolojisi ve uygulama alanları hakkında detaylı bilgiler verilmiştir.

Kaynakça

  • 1. Daminabo, S., et al., Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. 2020. 16: p. 100248.
  • 2. Jiang, J., et al., Effect of support on printed properties in fused deposition modelling processes. 2019. 14(4): p. 308-315.
  • 3. Najmon, J.C., S. Raeisi, and A. Tovar, Review of additive manufacturing technologies and applications in the aerospace industry, in Additive manufacturing for the aerospace industry. 2019, Elsevier. p. 7-31.
  • 4. Singh, S. and R.J.R.P.J. Singh, Fused deposition modelling based rapid patterns for investment casting applications: a review. 2016.
  • 5. Durgun, I.J.R.P.J., Sheet metal forming using FDM rapid prototype tool. 2015.
  • 6. Başcı, Ü.G. and Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri İçin Metal Tozu Üretim Yöntemleri in International Maramara Sciences Congress. 2019. p. 219-227.
  • 7. Tofail, S.A., et al., Additive manufacturing: scientific and technological challenges, market uptake and opportunities. 2018. 21(1): p. 22-37.
  • 8. Sathies, T., P. Senthil, and M.J.R.P.J. Anoop, A review on advancements in applications of fused deposition modelling process. 2020.
  • 9. Gasman, L., Additive aerospace considered as a business, in Additive Manufacturing for the Aerospace Industry. 2019, Elsevier. p. 327-340.
  • 10. Wiese, M., S. Thiede, and C.J.A.M. Herrmann, Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. 2020: p. 101582.
  • 11. Smith, M.L. and J.F.J.A.s.e. Jones, Dual‐extrusion 3D printing of anatomical models for education. 2018. 11(1): p. 65-72.
  • 12. Ngo, T.D., et al., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. 2018. 143: p. 172-196.
  • 13. Dizon, J.R.C., et al., Mechanical characterization of 3D-printed polymers. 2018. 20: p. 44-67.
  • 14. Das, A., et al., Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. 2020: p. 101218.
  • 15. Corcione, C.E., et al., Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. 2019. 45(2): p. 2803-2810.
  • 16. Balletti, C., M. Ballarin, and F.J.J.o.C.H. Guerra, 3D printing: State of the art and future perspectives. 2017. 26: p. 172-182.
  • 17. 52900:2017, E.I.A., Additive Manufacturing, in General Principles-Terminology. 2017.
  • 18. Başcı U.G., Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri Ve Uygulama Alanları, in International Maramara Sciences Congress. 2020. p. 307-314.
  • 19. Material Extrusion, in Design for Additive Manufacturing, M. Leary, Editor. 2020, Elsevier. p. 223-268.
  • 20. Chohan, J.S. and R.J.R.P.J. Singh, Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. 2017.
  • 21. Lalehpour, A., C. Janeteas, and A.J.T.I.J.o.A.M.T. Barari, Surface roughness of FDM parts after post-processing with acetone vapor bath smoothing process. 2018. 95(1-4): p. 1505-1520.
  • 22. Kuo, C.C.J.M.u.W., Fabrication of modeling platform for fused deposition modeling using vacuum casting. 2013. 44(11): p. 922-926.
  • 23. Lee, C., et al., Rapid investment casting: direct and indirect approaches via fused deposition modelling. 2004. 23(1-2): p. 93-101.
  • 24. Chua, C.K., C.H. Wong, and W.Y. Yeong, Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. 2017: Academic Press.
  • 25. Long, J., et al., Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. 2017. 23(3): p. 433-439.
  • 26. Chakraborty, S. and M.C.J.C.S. Biswas, 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer. 2020: p. 112562.
  • 27. Sun, L.J.L.M. and T.D.f. Activewear, and challenges. 2020: p. 139.
  • 28. Szulżyk-Cieplak, J., et al., 3D printers–new possibilities in education. 2014. 8(24): p. 96--101.
  • 29. Torres, K., et al., Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. 2011. 70(1): p. 1-4.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Ümit Gencay Başcı

Rıdvan Yamanoğlu 0000-0002-4661-8215

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 9 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 2

Kaynak Göster

APA Başcı, Ü. G., & Yamanoğlu, R. (2021). YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339-352. https://doi.org/10.46519/ij3dptdi.838281
AMA Başcı ÜG, Yamanoğlu R. YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. IJ3DPTDI. Ağustos 2021;5(2):339-352. doi:10.46519/ij3dptdi.838281
Chicago Başcı, Ümit Gencay, ve Rıdvan Yamanoğlu. “YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT”. International Journal of 3D Printing Technologies and Digital Industry 5, sy. 2 (Ağustos 2021): 339-52. https://doi.org/10.46519/ij3dptdi.838281.
EndNote Başcı ÜG, Yamanoğlu R (01 Ağustos 2021) YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry 5 2 339–352.
IEEE Ü. G. Başcı ve R. Yamanoğlu, “YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT”, IJ3DPTDI, c. 5, sy. 2, ss. 339–352, 2021, doi: 10.46519/ij3dptdi.838281.
ISNAD Başcı, Ümit Gencay - Yamanoğlu, Rıdvan. “YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT”. International Journal of 3D Printing Technologies and Digital Industry 5/2 (Ağustos 2021), 339-352. https://doi.org/10.46519/ij3dptdi.838281.
JAMA Başcı ÜG, Yamanoğlu R. YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. IJ3DPTDI. 2021;5:339–352.
MLA Başcı, Ümit Gencay ve Rıdvan Yamanoğlu. “YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT”. International Journal of 3D Printing Technologies and Digital Industry, c. 5, sy. 2, 2021, ss. 339-52, doi:10.46519/ij3dptdi.838281.
Vancouver Başcı ÜG, Yamanoğlu R. YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. IJ3DPTDI. 2021;5(2):339-52.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.