Research Article
BibTex RIS Cite

STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ

Year 2022, Volume: 6 Issue: 3, 399 - 407, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1138450

Abstract

Eklemeli üretim (EÜ), yalnızca prototip oluşturma konusunda değil, aynı zamanda nihai tasarımlara basılı parçaların dahil edilmesinin kolaylığı nedeniyle de endüstride bir değişimi yönlendiriyor. Stereolithografi (SLA), 3B yazıcı teknolojisi kullanılarak karmaşık parçaların hızlı üretilebildiği ve platform üzerinde dikey olarak çalışan bir eklemeli üretim teknolojisidir. Bu teknikte akışkan reçine, lazer ışını ile 3B parçalar kullanılarak katman katman işlenerek model elde edilmektedir. Diğer üretim tekniklerinden farklı olarak model şeffaf ve dayanıklı bir yapıdadır. SLA ile üretim yapan 3B yazıcılarla üretilen parçaların mekanik özelliklerinin bilinmesi, parçaların verimli çalışması ve üretim tekniğinin kullanımının yaygınlaşması açısından önemlidir. Bu çalışmada, Flashforge Foto 6.0 3B yazıcı ile Anycubic UV reçine malzeme kullanarak farklı doluluk oranına sahip 15 adet çekme ve 15 adet basma olmak üzere toplamda 30 adet numune üretilmiştir. Doluluk oranının mekanik özellikler üzerindeki etkileri araştırılmıştır. Sonuç olarak, %25, %50 ve %100 doluluk oranının, SLA tabanlı 3B yazıcı ile üretilen çekme ve basma numunelerinin mekanik özellikleri üzerinde etkisi olduğu tespit edilmiştir. Kullanılan doluluk oranları arasından en yüksek çekme ve basma mukavemetinin “%100” doluluk oranında olduğu belirlenmiştir. Bu değerler sırasıyla 10.095 MPa ve 10.098 MPa’dır. Ortalama çekme ve basma mukavemeti değerlerinin doluluk oranı arttıkça yükseldiği gözlemlenmiştir.

Supporting Institution

SİİRT ÜNİVERSİTESİ

Project Number

2021-SİUMÜH-49

Thanks

Bu çalışma Siirt Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2021-SİUMÜH-49 numaralı proje olarak desteklenmektedir. Bu çalışma Siirt Üniversitesi Mühendislik Fakültesi İşaret İşleme Laboratuvarı'nda yapılmıştır. Bu makalenin yazarları, destekleri için İşaret İşleme Laboratuvar çalışanlarına teşekkür eder.

References

  • 1. Huang, J., Ware, H. O. T., Hai, R., Shao, G., Sun, C., “Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers”, Advanced Materials, Vol. 33, Issue 11, Pages 1-8, 2021.
  • 2. Nguyen, N. A., Barnes, S. H., Bowland, C. C., Meek, K. M., Littrell, K. C., Keum, J. K., Naskar, A. K., “A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability”, Science Advances, Vol. 4, Issue 12, Pages 1-15, 2018.
  • 3. Zhang, P., Yu, Y., Chen, B., Wang, W., Wei, S., Rao, W., Wang, Q., “Fast fabrication of double-layer printed circuits using bismuth-based low-melting alloy beads”, Journal of Materials Chemistry C, Vol. 8, Issue 24, Pages 8028-8035, 2020.
  • 4. Kowsari, K., Akbari, S., Wang, D., Fang, N. X., Ge, Q., “High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing”, 3D Printing and Additive Manufacturing, Vol. 5, Issue 3, 2018.
  • 5. Han, D., Lee, H., “Recent advances in multi-material additive manufacturing: Methods and applications”, Current Opinion in Chemical Engineering, Vol. 28, Issue 2, Pages 158-166, 2020.
  • 6. Borlaf, M., Szubra, N., Serra-Capdevila, A., Kubiak, W. W., Graule, T., “Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology”, Journal of the European Ceramic Society, Vol. 40, Issue 4, Pages 1574-1581, 2020.
  • 7. Yılmaz, G. Ü. R., “Bilgisayarlı tomografi verilerinden anatomik ayak kemik yapısının ultraviyole ledli 3 boyutlu yazıcı ile üretimi”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 22, Sayfa 128-133, 2021.
  • 8. Padmakumar, M., “Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques”, Lasers Manuf. Mater. Process, Vol. 7, Issue 3, 2020.
  • 9. Metel, A. S., Stebulyanin, M. M., Fedorov, S. V., Okunkova, A. A., “Power density distribution for laser additive manufacturing (SLM): potential”, Fundamentals and Advanced Applications. Technologies, Vol. 7, Issue 1, Pages 1-8, 2018.
  • 10. Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., Abdullah, L. C., “Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review”, Polymers, Vol. 13, Issue 9, Pages 1-12, 2021.
  • 11. Walczak, M., Szala, M., “Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing”, Archives of Civil and Mechanical Engineering, Vol. 21, Issue 4, 2021.
  • 12. Caminero, M. A., Chacón, J. M., García-Moreno, I., Reverte, J. M., “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling”, Polymer Testing, Vol. 68, Issue 5, Pages 415-423, 2018.
  • 13. Hu, X., Yang, Z., Kang, S., Jiang, M., Zhou, Z., Gou, J., He, J., “Cellulose hydrogel skeleton by extrusion 3D printing of solution”, Nanotechnology Reviews, Vol. 9, Issue 1, Pages 345-353, 2020.
  • 14. Chacón, J. M., Caminero, M. A., Núñez, P. J., García-Plaza, E., García-Moreno, I., Reverte, J. M., “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties”, Composites Science and Technology, Vol. 181, Issue 2, Pages 1-18, 2019.
  • 15. Chia, H. N., Wu, B. M., “Recent advances in 3D printing of biomaterials”, Journal of Biological Engineering, Vol. 9, Issue 1, Pages 1-14, 2015.
  • 16. Huang, B., Wu, B., Han, L., Lu, Z., Zhou, W., “Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties”, Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 34, Issue 4, Pages 761-768, 2019.
  • 17. Curti, C., Kirby, D. J., Russell, C. A., “Stereolithography apparatus evolution: enhancing throughput and efficiency of pharmaceutical formulation development”, Pharmaceutics, Vol. 13, Issue 5, Pages 616-630, 2021.
  • 18. Lim, S. H., Kathuria, H., Amir, M. H. B., Zhang, X., Duong, H. T., Ho, P. C. L., Kang, L., “High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide”, Journal of Controlled Release, Vol. 329, Pages 907-918, 2021.
  • 19. Goyanes, A., Buanz, A. B., Hatton, G. B., Gaisford, S., Basit, A. W., “3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 89, 2015.
  • 20. Konta, A. A., García-Piña, M., Serrano, D. R., “Personalised 3D printed medicines: which techniques and polymers are more successful?”, Bioengineering, Vol. 4, Issue 4, 2017.
  • 21. Melchels, F. P., Feijen, J., Grijpma, D. W. , “A review on stereolithography and its applications in biomedical engineering”, Biomaterials, Vol. 31, Issue 24, Pages 6121-6130, 2010.
  • 22. Gardan, J., “Additive manufacturing technologies: state of the art and trends”, Additive Manufacturing Handbook, Pages 149-168, CRC Press, 2017.
  • 23. Vitale, A., Cabral, J. T., “Frontal conversion and uniformity in 3D printing by photopolymerisation”, Materials, Vol. 9, Issue 760, 2016.
  • 24. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A., “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties”, Materials & Design, Vol. 188, Issue 3, Pages 1-15, 2020.
  • 25. Chacón, J. M., Caminero, M. A., García-Plaza, E., Núnez, P. J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials & Design, Vol. 124, Pages 143-157, 2017.
  • 26. Mahir, U., Erdogdu, Y. E., “Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması”, Journal of the Institute of Science and Technology, Vol. 10, Issue 4, Pages 2800-2808, 2020.
  • 27. Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Ahmet, K., “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi”, Uludağ University Journal of The Faculty of Engineering, Vol. 26, Issue 3, Pages 829-848, 2021. 28. Garzon-Hernandez, S., Arias, A., Garcia-Gonzalez, D., “A continuum constitutive model for FDM 3D printed thermoplastics”, Composites Part B: Engineering, Vol. 201, Pages 1-16, 2020.
  • 29. Özsoy, K., Erçetin, A., Çevik, Z. A., “Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 27, Sayfa 802-809, 2021.
  • 30. Li, S., Yuan, S., Zhu, J., Wang, C., Li, J., Zhang, W., “Additive manufacturing-driven design optimization: Building direction and structural topology”, Additive Manufacturing, Vol. 36, 2020.
  • 31. Aktitiz, İ., Aydın, K., Topcu, A., “Stereolitografi (SLA) Tekniği ile Basılan 3 Boyutlu Polimer Yapılarda İkincil Kürleme Süresinin Mekanik Özelliklere Etkisi”, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 35, Issue 4, Pages 949-958, 2020.
  • 32. Hossain, M., Navaratne, R., Perić, D., “3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions”, International Journal of Non-Linear Mechanics, Vol. 126, Issue 4, Pages 1-12, 2020.
  • 33. Miedzińska, D., Gieleta, R., Małek, E., “Experimental study of strength properties of SLA resins under low and high strain rates”, Mechanics of Materials, Vol. 141, Issue 2, Pages 1-18, 2020.
  • 34. Martín-Montal, J., Pernas-Sánchez, J., Varas, D., “Experimental characterization framework for SLA additive manufacturing materials”, Polymers, Vol. 13, Issue 7, 2021.
  • 35. Linares-Alvelais, J. A. R., Figueroa-Cavazos, J. O., Chuck-Hernandez, C., Siller, H. R., Rodríguez, C. A., Martínez-López, J. I., “Hydrostatic high-pressure post-processing of specimens fabricated by DLP, SLA, and FDM: An alternative for the sterilization of polymer-based biomedical devices”, Materials, Vol. 11, Issue 12, Pages 2540, 2018.
Year 2022, Volume: 6 Issue: 3, 399 - 407, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1138450

Abstract

Project Number

2021-SİUMÜH-49

References

  • 1. Huang, J., Ware, H. O. T., Hai, R., Shao, G., Sun, C., “Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers”, Advanced Materials, Vol. 33, Issue 11, Pages 1-8, 2021.
  • 2. Nguyen, N. A., Barnes, S. H., Bowland, C. C., Meek, K. M., Littrell, K. C., Keum, J. K., Naskar, A. K., “A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability”, Science Advances, Vol. 4, Issue 12, Pages 1-15, 2018.
  • 3. Zhang, P., Yu, Y., Chen, B., Wang, W., Wei, S., Rao, W., Wang, Q., “Fast fabrication of double-layer printed circuits using bismuth-based low-melting alloy beads”, Journal of Materials Chemistry C, Vol. 8, Issue 24, Pages 8028-8035, 2020.
  • 4. Kowsari, K., Akbari, S., Wang, D., Fang, N. X., Ge, Q., “High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing”, 3D Printing and Additive Manufacturing, Vol. 5, Issue 3, 2018.
  • 5. Han, D., Lee, H., “Recent advances in multi-material additive manufacturing: Methods and applications”, Current Opinion in Chemical Engineering, Vol. 28, Issue 2, Pages 158-166, 2020.
  • 6. Borlaf, M., Szubra, N., Serra-Capdevila, A., Kubiak, W. W., Graule, T., “Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology”, Journal of the European Ceramic Society, Vol. 40, Issue 4, Pages 1574-1581, 2020.
  • 7. Yılmaz, G. Ü. R., “Bilgisayarlı tomografi verilerinden anatomik ayak kemik yapısının ultraviyole ledli 3 boyutlu yazıcı ile üretimi”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 22, Sayfa 128-133, 2021.
  • 8. Padmakumar, M., “Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques”, Lasers Manuf. Mater. Process, Vol. 7, Issue 3, 2020.
  • 9. Metel, A. S., Stebulyanin, M. M., Fedorov, S. V., Okunkova, A. A., “Power density distribution for laser additive manufacturing (SLM): potential”, Fundamentals and Advanced Applications. Technologies, Vol. 7, Issue 1, Pages 1-8, 2018.
  • 10. Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., Abdullah, L. C., “Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review”, Polymers, Vol. 13, Issue 9, Pages 1-12, 2021.
  • 11. Walczak, M., Szala, M., “Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing”, Archives of Civil and Mechanical Engineering, Vol. 21, Issue 4, 2021.
  • 12. Caminero, M. A., Chacón, J. M., García-Moreno, I., Reverte, J. M., “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling”, Polymer Testing, Vol. 68, Issue 5, Pages 415-423, 2018.
  • 13. Hu, X., Yang, Z., Kang, S., Jiang, M., Zhou, Z., Gou, J., He, J., “Cellulose hydrogel skeleton by extrusion 3D printing of solution”, Nanotechnology Reviews, Vol. 9, Issue 1, Pages 345-353, 2020.
  • 14. Chacón, J. M., Caminero, M. A., Núñez, P. J., García-Plaza, E., García-Moreno, I., Reverte, J. M., “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties”, Composites Science and Technology, Vol. 181, Issue 2, Pages 1-18, 2019.
  • 15. Chia, H. N., Wu, B. M., “Recent advances in 3D printing of biomaterials”, Journal of Biological Engineering, Vol. 9, Issue 1, Pages 1-14, 2015.
  • 16. Huang, B., Wu, B., Han, L., Lu, Z., Zhou, W., “Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties”, Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 34, Issue 4, Pages 761-768, 2019.
  • 17. Curti, C., Kirby, D. J., Russell, C. A., “Stereolithography apparatus evolution: enhancing throughput and efficiency of pharmaceutical formulation development”, Pharmaceutics, Vol. 13, Issue 5, Pages 616-630, 2021.
  • 18. Lim, S. H., Kathuria, H., Amir, M. H. B., Zhang, X., Duong, H. T., Ho, P. C. L., Kang, L., “High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide”, Journal of Controlled Release, Vol. 329, Pages 907-918, 2021.
  • 19. Goyanes, A., Buanz, A. B., Hatton, G. B., Gaisford, S., Basit, A. W., “3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 89, 2015.
  • 20. Konta, A. A., García-Piña, M., Serrano, D. R., “Personalised 3D printed medicines: which techniques and polymers are more successful?”, Bioengineering, Vol. 4, Issue 4, 2017.
  • 21. Melchels, F. P., Feijen, J., Grijpma, D. W. , “A review on stereolithography and its applications in biomedical engineering”, Biomaterials, Vol. 31, Issue 24, Pages 6121-6130, 2010.
  • 22. Gardan, J., “Additive manufacturing technologies: state of the art and trends”, Additive Manufacturing Handbook, Pages 149-168, CRC Press, 2017.
  • 23. Vitale, A., Cabral, J. T., “Frontal conversion and uniformity in 3D printing by photopolymerisation”, Materials, Vol. 9, Issue 760, 2016.
  • 24. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A., “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties”, Materials & Design, Vol. 188, Issue 3, Pages 1-15, 2020.
  • 25. Chacón, J. M., Caminero, M. A., García-Plaza, E., Núnez, P. J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials & Design, Vol. 124, Pages 143-157, 2017.
  • 26. Mahir, U., Erdogdu, Y. E., “Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması”, Journal of the Institute of Science and Technology, Vol. 10, Issue 4, Pages 2800-2808, 2020.
  • 27. Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Ahmet, K., “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi”, Uludağ University Journal of The Faculty of Engineering, Vol. 26, Issue 3, Pages 829-848, 2021. 28. Garzon-Hernandez, S., Arias, A., Garcia-Gonzalez, D., “A continuum constitutive model for FDM 3D printed thermoplastics”, Composites Part B: Engineering, Vol. 201, Pages 1-16, 2020.
  • 29. Özsoy, K., Erçetin, A., Çevik, Z. A., “Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 27, Sayfa 802-809, 2021.
  • 30. Li, S., Yuan, S., Zhu, J., Wang, C., Li, J., Zhang, W., “Additive manufacturing-driven design optimization: Building direction and structural topology”, Additive Manufacturing, Vol. 36, 2020.
  • 31. Aktitiz, İ., Aydın, K., Topcu, A., “Stereolitografi (SLA) Tekniği ile Basılan 3 Boyutlu Polimer Yapılarda İkincil Kürleme Süresinin Mekanik Özelliklere Etkisi”, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 35, Issue 4, Pages 949-958, 2020.
  • 32. Hossain, M., Navaratne, R., Perić, D., “3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions”, International Journal of Non-Linear Mechanics, Vol. 126, Issue 4, Pages 1-12, 2020.
  • 33. Miedzińska, D., Gieleta, R., Małek, E., “Experimental study of strength properties of SLA resins under low and high strain rates”, Mechanics of Materials, Vol. 141, Issue 2, Pages 1-18, 2020.
  • 34. Martín-Montal, J., Pernas-Sánchez, J., Varas, D., “Experimental characterization framework for SLA additive manufacturing materials”, Polymers, Vol. 13, Issue 7, 2021.
  • 35. Linares-Alvelais, J. A. R., Figueroa-Cavazos, J. O., Chuck-Hernandez, C., Siller, H. R., Rodríguez, C. A., Martínez-López, J. I., “Hydrostatic high-pressure post-processing of specimens fabricated by DLP, SLA, and FDM: An alternative for the sterilization of polymer-based biomedical devices”, Materials, Vol. 11, Issue 12, Pages 2540, 2018.

INVESTIGATION OF THE MECHANICAL PROPERTIES OF SAMPLES PRODUCED AT DIFFERENT FILLING RATIOS BY STEREOLITHHOGRAPHY ADDITIVE MANUFACTURING METHOD

Year 2022, Volume: 6 Issue: 3, 399 - 407, 31.12.2022
https://doi.org/10.46519/ij3dptdi.1138450

Abstract

Additive manufacturing (AM) is driving a change in the industry, not only in prototyping, but also because of the ease of incorporating printed parts into final designs. Stereolithography (SLA) is an additive manufacturing technology that can quickly produce complex parts using 3D printer technology and runs vertically on the platform. In this technique, a model is obtained by processing the fluid resin layer by layer using 3D parts with a laser beam. Unlike other production techniques, the model is transparent and durable. Knowing the mechanical properties of the parts produced with 3D printers that produce with SLA is important for the efficient operation of the parts and the widespread use of the production technique. In this study, a total of 30 samples, 15 tensile and 15 compression, with different filling ratios, were produced using Flashforge Photo 6.0 3D printer and Anycubic UV resin material. The effects of filling ratio on mechanical properties were investigated. As a result, it has been determined that 25%, 50% and 100% filling rates have an effect on the mechanical properties of the tensile and compression samples produced with SLA-based 3D printer. It was determined that the highest tensile and compression strength among the filling ratios used was “100%” filling ratio. These values are 10.095 MPa and 10.098 MPa, respectively. It has been observed that the average tensile and compressive strength values increase as the filling ratio increases.

Project Number

2021-SİUMÜH-49

References

  • 1. Huang, J., Ware, H. O. T., Hai, R., Shao, G., Sun, C., “Conformal geometry and multimaterial additive manufacturing through freeform transformation of building layers”, Advanced Materials, Vol. 33, Issue 11, Pages 1-8, 2021.
  • 2. Nguyen, N. A., Barnes, S. H., Bowland, C. C., Meek, K. M., Littrell, K. C., Keum, J. K., Naskar, A. K., “A path for lignin valorization via additive manufacturing of high-performance sustainable composites with enhanced 3D printability”, Science Advances, Vol. 4, Issue 12, Pages 1-15, 2018.
  • 3. Zhang, P., Yu, Y., Chen, B., Wang, W., Wei, S., Rao, W., Wang, Q., “Fast fabrication of double-layer printed circuits using bismuth-based low-melting alloy beads”, Journal of Materials Chemistry C, Vol. 8, Issue 24, Pages 8028-8035, 2020.
  • 4. Kowsari, K., Akbari, S., Wang, D., Fang, N. X., Ge, Q., “High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing”, 3D Printing and Additive Manufacturing, Vol. 5, Issue 3, 2018.
  • 5. Han, D., Lee, H., “Recent advances in multi-material additive manufacturing: Methods and applications”, Current Opinion in Chemical Engineering, Vol. 28, Issue 2, Pages 158-166, 2020.
  • 6. Borlaf, M., Szubra, N., Serra-Capdevila, A., Kubiak, W. W., Graule, T., “Fabrication of ZrO2 and ATZ materials via UV-LCM-DLP additive manufacturing technology”, Journal of the European Ceramic Society, Vol. 40, Issue 4, Pages 1574-1581, 2020.
  • 7. Yılmaz, G. Ü. R., “Bilgisayarlı tomografi verilerinden anatomik ayak kemik yapısının ultraviyole ledli 3 boyutlu yazıcı ile üretimi”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 22, Sayfa 128-133, 2021.
  • 8. Padmakumar, M., “Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques”, Lasers Manuf. Mater. Process, Vol. 7, Issue 3, 2020.
  • 9. Metel, A. S., Stebulyanin, M. M., Fedorov, S. V., Okunkova, A. A., “Power density distribution for laser additive manufacturing (SLM): potential”, Fundamentals and Advanced Applications. Technologies, Vol. 7, Issue 1, Pages 1-8, 2018.
  • 10. Lee, C. H., Padzil, F. N. B. M., Lee, S. H., Ainun, Z. M. A. A., Abdullah, L. C., “Potential for natural fiber reinforcement in PLA polymer filaments for fused deposition modeling (FDM) additive manufacturing: A review”, Polymers, Vol. 13, Issue 9, Pages 1-12, 2021.
  • 11. Walczak, M., Szala, M., “Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing”, Archives of Civil and Mechanical Engineering, Vol. 21, Issue 4, 2021.
  • 12. Caminero, M. A., Chacón, J. M., García-Moreno, I., Reverte, J. M., “Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling”, Polymer Testing, Vol. 68, Issue 5, Pages 415-423, 2018.
  • 13. Hu, X., Yang, Z., Kang, S., Jiang, M., Zhou, Z., Gou, J., He, J., “Cellulose hydrogel skeleton by extrusion 3D printing of solution”, Nanotechnology Reviews, Vol. 9, Issue 1, Pages 345-353, 2020.
  • 14. Chacón, J. M., Caminero, M. A., Núñez, P. J., García-Plaza, E., García-Moreno, I., Reverte, J. M., “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties”, Composites Science and Technology, Vol. 181, Issue 2, Pages 1-18, 2019.
  • 15. Chia, H. N., Wu, B. M., “Recent advances in 3D printing of biomaterials”, Journal of Biological Engineering, Vol. 9, Issue 1, Pages 1-14, 2015.
  • 16. Huang, B., Wu, B., Han, L., Lu, Z., Zhou, W., “Preparation of a novel cationic photosensitive resin (3D-SLR01) for stereolithography 3D printing and determination of its some properties”, Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 34, Issue 4, Pages 761-768, 2019.
  • 17. Curti, C., Kirby, D. J., Russell, C. A., “Stereolithography apparatus evolution: enhancing throughput and efficiency of pharmaceutical formulation development”, Pharmaceutics, Vol. 13, Issue 5, Pages 616-630, 2021.
  • 18. Lim, S. H., Kathuria, H., Amir, M. H. B., Zhang, X., Duong, H. T., Ho, P. C. L., Kang, L., “High resolution photopolymer for 3D printing of personalised microneedle for transdermal delivery of anti-wrinkle small peptide”, Journal of Controlled Release, Vol. 329, Pages 907-918, 2021.
  • 19. Goyanes, A., Buanz, A. B., Hatton, G. B., Gaisford, S., Basit, A. W., “3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets”, European Journal of Pharmaceutics and Biopharmaceutics, Vol. 89, 2015.
  • 20. Konta, A. A., García-Piña, M., Serrano, D. R., “Personalised 3D printed medicines: which techniques and polymers are more successful?”, Bioengineering, Vol. 4, Issue 4, 2017.
  • 21. Melchels, F. P., Feijen, J., Grijpma, D. W. , “A review on stereolithography and its applications in biomedical engineering”, Biomaterials, Vol. 31, Issue 24, Pages 6121-6130, 2010.
  • 22. Gardan, J., “Additive manufacturing technologies: state of the art and trends”, Additive Manufacturing Handbook, Pages 149-168, CRC Press, 2017.
  • 23. Vitale, A., Cabral, J. T., “Frontal conversion and uniformity in 3D printing by photopolymerisation”, Materials, Vol. 9, Issue 760, 2016.
  • 24. Garzon-Hernandez, S., Garcia-Gonzalez, D., Jérusalem, A., Arias, A., “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties”, Materials & Design, Vol. 188, Issue 3, Pages 1-15, 2020.
  • 25. Chacón, J. M., Caminero, M. A., García-Plaza, E., Núnez, P. J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials & Design, Vol. 124, Pages 143-157, 2017.
  • 26. Mahir, U., Erdogdu, Y. E., “Eriyik yığma modellemesi ile üretimde takviyesiz ve takviyeli PLA kullanımının mekanik özelliklere etkisinin araştırılması”, Journal of the Institute of Science and Technology, Vol. 10, Issue 4, Pages 2800-2808, 2020.
  • 27. Kamer, M. S., Temiz, Ş., Yaykaşlı, H., Ahmet, K., “3 Boyutlu yazıcı ile farklı renklerde ve farklı dolgu desenlerinde üretilen çekme test numunelerinin mekanik özelliklerinin incelenmesi”, Uludağ University Journal of The Faculty of Engineering, Vol. 26, Issue 3, Pages 829-848, 2021. 28. Garzon-Hernandez, S., Arias, A., Garcia-Gonzalez, D., “A continuum constitutive model for FDM 3D printed thermoplastics”, Composites Part B: Engineering, Vol. 201, Pages 1-16, 2020.
  • 29. Özsoy, K., Erçetin, A., Çevik, Z. A., “Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing”, Avrupa Bilim ve Teknoloji Dergisi, Sayı 27, Sayfa 802-809, 2021.
  • 30. Li, S., Yuan, S., Zhu, J., Wang, C., Li, J., Zhang, W., “Additive manufacturing-driven design optimization: Building direction and structural topology”, Additive Manufacturing, Vol. 36, 2020.
  • 31. Aktitiz, İ., Aydın, K., Topcu, A., “Stereolitografi (SLA) Tekniği ile Basılan 3 Boyutlu Polimer Yapılarda İkincil Kürleme Süresinin Mekanik Özelliklere Etkisi”, Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Vol. 35, Issue 4, Pages 949-958, 2020.
  • 32. Hossain, M., Navaratne, R., Perić, D., “3D printed elastomeric polyurethane: Viscoelastic experimental characterizations and constitutive modelling with nonlinear viscosity functions”, International Journal of Non-Linear Mechanics, Vol. 126, Issue 4, Pages 1-12, 2020.
  • 33. Miedzińska, D., Gieleta, R., Małek, E., “Experimental study of strength properties of SLA resins under low and high strain rates”, Mechanics of Materials, Vol. 141, Issue 2, Pages 1-18, 2020.
  • 34. Martín-Montal, J., Pernas-Sánchez, J., Varas, D., “Experimental characterization framework for SLA additive manufacturing materials”, Polymers, Vol. 13, Issue 7, 2021.
  • 35. Linares-Alvelais, J. A. R., Figueroa-Cavazos, J. O., Chuck-Hernandez, C., Siller, H. R., Rodríguez, C. A., Martínez-López, J. I., “Hydrostatic high-pressure post-processing of specimens fabricated by DLP, SLA, and FDM: An alternative for the sterilization of polymer-based biomedical devices”, Materials, Vol. 11, Issue 12, Pages 2540, 2018.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Salih Rahmi Turan 0000-0001-5826-0786

Osman Ülkir 0000-0002-1095-0160

Melih Kuncan 0000-0002-9749-0418

Abdulkadir Buldu 0000-0002-9161-4862

Project Number 2021-SİUMÜH-49
Early Pub Date October 14, 2022
Publication Date December 31, 2022
Submission Date June 30, 2022
Published in Issue Year 2022 Volume: 6 Issue: 3

Cite

APA Turan, S. R., Ülkir, O., Kuncan, M., Buldu, A. (2022). STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 399-407. https://doi.org/10.46519/ij3dptdi.1138450
AMA Turan SR, Ülkir O, Kuncan M, Buldu A. STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. IJ3DPTDI. December 2022;6(3):399-407. doi:10.46519/ij3dptdi.1138450
Chicago Turan, Salih Rahmi, Osman Ülkir, Melih Kuncan, and Abdulkadir Buldu. “STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 6, no. 3 (December 2022): 399-407. https://doi.org/10.46519/ij3dptdi.1138450.
EndNote Turan SR, Ülkir O, Kuncan M, Buldu A (December 1, 2022) STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. International Journal of 3D Printing Technologies and Digital Industry 6 3 399–407.
IEEE S. R. Turan, O. Ülkir, M. Kuncan, and A. Buldu, “STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ”, IJ3DPTDI, vol. 6, no. 3, pp. 399–407, 2022, doi: 10.46519/ij3dptdi.1138450.
ISNAD Turan, Salih Rahmi et al. “STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry 6/3 (December 2022), 399-407. https://doi.org/10.46519/ij3dptdi.1138450.
JAMA Turan SR, Ülkir O, Kuncan M, Buldu A. STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. IJ3DPTDI. 2022;6:399–407.
MLA Turan, Salih Rahmi et al. “STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ”. International Journal of 3D Printing Technologies and Digital Industry, vol. 6, no. 3, 2022, pp. 399-07, doi:10.46519/ij3dptdi.1138450.
Vancouver Turan SR, Ülkir O, Kuncan M, Buldu A. STEREOLİTHOGRAFİ EKLEMELİ İMALAT YÖNTEMİYLE FARKLI DOLULUK ORANLARINDA ÜRETİLEN NUMUNELERİN MEKANİK ÖZELLİKLERİNİN İNCELENMESİ. IJ3DPTDI. 2022;6(3):399-407.

download

International Journal of 3D Printing Technologies and Digital Industry is lisenced under Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı