Research Article
BibTex RIS Cite
Year 2019, Volume: 8 Issue: 1, 1 - 10, 20.05.2019
https://doi.org/10.18245/ijaet.500789

Abstract

References

  • 1. E. Arabaci, and Y. İçingür, “Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine” Journal of the Energy Institute, 2016, 89, 569-577, DOI:10.1016/j.joei.2015.06.006.
  • 2. E. Arabaci, Y. İçingür, H. Solmaz, A. Uyumaz, and E. Yilmaz, “Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine”. Energy conversion and management, 2015, 98, 89-97, DOI:10.1016/j.enconman.2015.03.045.
  • 3. Y. İçingür, E. Arabaci, “Performance and ıdealized air-fuel cycle analysis of a six-stroke spark-ignition engine”. Journal of Polytechnic, 2013, 16, 37-44, DOI:10.2339/2012.16.1
  • 4. E. Arabaci, “Six-stroke reciprocating internal combustion engines” Mehmet Akif Ersoy University Journal of Natural and Applied Sciences Institute, 2012, 3, 37-45.
  • 5. R. Ebrahimi, M. Hoseinpour, “Performance analysis of irreversible Miller cycle under variable compression ratio” Journal of Thermophysics and Heat Transfer, 2013, 27, 542-548, DOI:10.2514/1.T3981.
  • 6. S.A. Klein, “An explanation for observed compression ratios in internal combustion engines” Journal of engineering for gas turbines and power, 1991, 113, 511-513, DOI:10.1115/1.2906270.
  • 7. Y.L. Ge, L. Chen, and F.R. Sun, “Ecological Optimization of an Irreversible Otto Cycle With Variable Specific Heats of Working Fluid” Proceedings of the Chinese Society of Engineering Thermophysics on Engineering Thermophysics and Energy Utility, Wuhan, China, 2011, 5-7, DOI: 10.1615/TFEC2017.fna.018308.
  • 8. R. Ebrahimi, “Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine” Mathematical and Computer Modelling, 2011, 53, 1289-1297, DOI:10.1016/j.mcm.2010.12.015.
  • 9. R. Ebrahimi, “Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases” Acta Physica Polonica, A., 2013, 124, , 29-34, DOI:10.12693/APhysPolA.124.29.
  • 10. R. Ebrahimi, “Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle” Acta Physica Polonica A, 2018, 133, 201-205, DOI:10.12693/APhysPolA.133.201.
  • 11. J. You, L. Chen, Z. Wu, and F. Sun,”Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function” Science China Technological Sciences, 2018, 61, 453-463, DOI:10.1007/s11431-017-9108-2.
  • 12. Y. Ge, L. Chen, F. Sun, and C. Wu, “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid” International Journal of Thermal Sciences, 2005, 44, 506-511, DOI:10.1016/j.ijthermalsci.2004.10.001.
  • 13. G. Gonca, “Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)” Energy, 2016, 109, 152-159, DOI:10.1016/j.energy.2016.04.049.
  • 14. Y. Zhao, and J. Chen, “An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis” International Journal of Thermal Sciences, 2007, 46, 605-613, DOI:10.1016/j.ijthermalsci.2006.04.005.
  • 15. E. Dobrucali, “The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine”,. Energy, 2016, 103, 119-126, DOI:10.1016/j.energy.2016.02.160.
  • 16. G. Gonca, B. Sahin, and Y. Ust, “Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version” Energy 2013, 54, 285-290, DOI:10.1016/j.energy.2013.02.004.
  • 17. G. Gonca, and B. Sahin, “The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle”, Applied Mathematical Modelling, 2016, 40, 3764-3782, DOI:10.1016/j.apm.2015.10.044.
  • 18. G. Gonca, and E. Dobrucali, “Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends”, Renewable Energy, 2016, 93, 658-666, DOI:10.1016/j.renene.2016.03.037.
  • 19. G. Gonca, “Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM)”, Applied Mathematical Modelling, 2017, 44, 655-675, DOI:10.1016/j.apm.2017.02.010.
  • 20. A.C. Hernández, J.M.M. Roco, A. Medina and S. Velasco, “An irreversible and optimized four stroke cycle model for automotive engines”, European Journal of Physics, 1996, 17, 11.
  • 21. A. Mousapour, A. Hajipour, Rashidi, and N. Freidoonimehr, “Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction”, Energy, 2016, 94, 100-109, DOI:10.1016/j.energy.2015.10.073.
  • 22. Y. Ge, L. Chen and X. Qin, “Effect of specific heat variations on irreversible Otto cycle performance”, International Journal of Heat and Mass Transfer, 2018, 122, 403-409, DOI:10.1016/j.ijheatmasstransfer.2018.01.132

Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed

Year 2019, Volume: 8 Issue: 1, 1 - 10, 20.05.2019
https://doi.org/10.18245/ijaet.500789

Abstract

The analysis of the
six-stroke Otto cycle was performed using the finite-time thermodynamics
dependence on mean piston speed, equivalence ratio and residual gas fraction.
In the analysis, friction loss, internal irreversibilities, heat transfer
losses were taken into account by empirical correlations. Relations between
power output, thermal efficiency, and compression ratio were obtained by
detailed numerical examples. The results were presented as comparative for
four- and six-stroke Otto cycle. It was assumed that the cycles operate with
the same mixture flow per second so that both performances of cycles can be
compared. The study showed that more fuel flow can be supplied to the
six-stroke Otto cycle for the same mixture flow. However, there was a slight
increase in the maximum cycle temperature. For this reason, the results are
crucial in providing a good guideline for evaluating and improving the
performance of real six-stroke Otto engines.

References

  • 1. E. Arabaci, and Y. İçingür, “Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine” Journal of the Energy Institute, 2016, 89, 569-577, DOI:10.1016/j.joei.2015.06.006.
  • 2. E. Arabaci, Y. İçingür, H. Solmaz, A. Uyumaz, and E. Yilmaz, “Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine”. Energy conversion and management, 2015, 98, 89-97, DOI:10.1016/j.enconman.2015.03.045.
  • 3. Y. İçingür, E. Arabaci, “Performance and ıdealized air-fuel cycle analysis of a six-stroke spark-ignition engine”. Journal of Polytechnic, 2013, 16, 37-44, DOI:10.2339/2012.16.1
  • 4. E. Arabaci, “Six-stroke reciprocating internal combustion engines” Mehmet Akif Ersoy University Journal of Natural and Applied Sciences Institute, 2012, 3, 37-45.
  • 5. R. Ebrahimi, M. Hoseinpour, “Performance analysis of irreversible Miller cycle under variable compression ratio” Journal of Thermophysics and Heat Transfer, 2013, 27, 542-548, DOI:10.2514/1.T3981.
  • 6. S.A. Klein, “An explanation for observed compression ratios in internal combustion engines” Journal of engineering for gas turbines and power, 1991, 113, 511-513, DOI:10.1115/1.2906270.
  • 7. Y.L. Ge, L. Chen, and F.R. Sun, “Ecological Optimization of an Irreversible Otto Cycle With Variable Specific Heats of Working Fluid” Proceedings of the Chinese Society of Engineering Thermophysics on Engineering Thermophysics and Energy Utility, Wuhan, China, 2011, 5-7, DOI: 10.1615/TFEC2017.fna.018308.
  • 8. R. Ebrahimi, “Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine” Mathematical and Computer Modelling, 2011, 53, 1289-1297, DOI:10.1016/j.mcm.2010.12.015.
  • 9. R. Ebrahimi, “Thermodynamic Modeling of an Atkinson Cycle with respect to Relative Air-Fuel Ratio, Fuel Mass Flow Rate and Residual Gases” Acta Physica Polonica, A., 2013, 124, , 29-34, DOI:10.12693/APhysPolA.124.29.
  • 10. R. Ebrahimi, “Effect of Volume Ratio of Heat Rejection Process on Performance of an Atkinson Cycle” Acta Physica Polonica A, 2018, 133, 201-205, DOI:10.12693/APhysPolA.133.201.
  • 11. J. You, L. Chen, Z. Wu, and F. Sun,”Thermodynamic performance of Dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function” Science China Technological Sciences, 2018, 61, 453-463, DOI:10.1007/s11431-017-9108-2.
  • 12. Y. Ge, L. Chen, F. Sun, and C. Wu, “Thermodynamic simulation of performance of an Otto cycle with heat transfer and variable specific heats of working fluid” International Journal of Thermal Sciences, 2005, 44, 506-511, DOI:10.1016/j.ijthermalsci.2004.10.001.
  • 13. G. Gonca, “Comparative performance analyses of irreversible OMCE (Otto Miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual Miller cycle engine)” Energy, 2016, 109, 152-159, DOI:10.1016/j.energy.2016.04.049.
  • 14. Y. Zhao, and J. Chen, “An irreversible heat engine model including three typical thermodynamic cycles and their optimum performance analysis” International Journal of Thermal Sciences, 2007, 46, 605-613, DOI:10.1016/j.ijthermalsci.2006.04.005.
  • 15. E. Dobrucali, “The effects of the engine design and running parameters on the performance of a Otto–Miller Cycle engine”,. Energy, 2016, 103, 119-126, DOI:10.1016/j.energy.2016.02.160.
  • 16. G. Gonca, B. Sahin, and Y. Ust, “Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version” Energy 2013, 54, 285-290, DOI:10.1016/j.energy.2013.02.004.
  • 17. G. Gonca, and B. Sahin, “The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle”, Applied Mathematical Modelling, 2016, 40, 3764-3782, DOI:10.1016/j.apm.2015.10.044.
  • 18. G. Gonca, and E. Dobrucali, “Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends”, Renewable Energy, 2016, 93, 658-666, DOI:10.1016/j.renene.2016.03.037.
  • 19. G. Gonca, “Effects of engine design and operating parameters on the performance of a spark ignition (SI) engine with steam injection method (SIM)”, Applied Mathematical Modelling, 2017, 44, 655-675, DOI:10.1016/j.apm.2017.02.010.
  • 20. A.C. Hernández, J.M.M. Roco, A. Medina and S. Velasco, “An irreversible and optimized four stroke cycle model for automotive engines”, European Journal of Physics, 1996, 17, 11.
  • 21. A. Mousapour, A. Hajipour, Rashidi, and N. Freidoonimehr, “Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction”, Energy, 2016, 94, 100-109, DOI:10.1016/j.energy.2015.10.073.
  • 22. Y. Ge, L. Chen and X. Qin, “Effect of specific heat variations on irreversible Otto cycle performance”, International Journal of Heat and Mass Transfer, 2018, 122, 403-409, DOI:10.1016/j.ijheatmasstransfer.2018.01.132
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Article
Authors

Emre Arabacı 0000-0002-6219-7246

Publication Date May 20, 2019
Submission Date December 21, 2018
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

APA Arabacı, E. (2019). Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed. International Journal of Automotive Engineering and Technologies, 8(1), 1-10. https://doi.org/10.18245/ijaet.500789
AMA Arabacı E. Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed. International Journal of Automotive Engineering and Technologies. May 2019;8(1):1-10. doi:10.18245/ijaet.500789
Chicago Arabacı, Emre. “Thermodynamic Analysis of Endoreversible Six-Stroke Otto Cycle With Respect to Equivalence Ratio, Residual Gas Fraction and Mean Piston Speed”. International Journal of Automotive Engineering and Technologies 8, no. 1 (May 2019): 1-10. https://doi.org/10.18245/ijaet.500789.
EndNote Arabacı E (May 1, 2019) Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed. International Journal of Automotive Engineering and Technologies 8 1 1–10.
IEEE E. Arabacı, “Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed”, International Journal of Automotive Engineering and Technologies, vol. 8, no. 1, pp. 1–10, 2019, doi: 10.18245/ijaet.500789.
ISNAD Arabacı, Emre. “Thermodynamic Analysis of Endoreversible Six-Stroke Otto Cycle With Respect to Equivalence Ratio, Residual Gas Fraction and Mean Piston Speed”. International Journal of Automotive Engineering and Technologies 8/1 (May 2019), 1-10. https://doi.org/10.18245/ijaet.500789.
JAMA Arabacı E. Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed. International Journal of Automotive Engineering and Technologies. 2019;8:1–10.
MLA Arabacı, Emre. “Thermodynamic Analysis of Endoreversible Six-Stroke Otto Cycle With Respect to Equivalence Ratio, Residual Gas Fraction and Mean Piston Speed”. International Journal of Automotive Engineering and Technologies, vol. 8, no. 1, 2019, pp. 1-10, doi:10.18245/ijaet.500789.
Vancouver Arabacı E. Thermodynamic analysis of endoreversible six-stroke Otto cycle with respect to equivalence ratio, residual gas fraction and mean piston speed. International Journal of Automotive Engineering and Technologies. 2019;8(1):1-10.