Research Article
BibTex RIS Cite
Year 2020, Volume: 9 Issue: 1, 11 - 19, 17.02.2020
https://doi.org/10.18245/ijaet.638953

Abstract

References

  • 1. Mamalis A.G., Manolakos D.E., Loannidis M.B., and P.K. Kostazos, “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: Experimental”, International Journal of Crashworthiness, 5(3), 315-332, 2000.
  • 2. Kim H. C., Shin D. K., Lee J. J., and Kwon J. B., “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application”, Composite Structures 112, 1-10, 2014.
  • 3. Mamalis A.G., Manolakos D.E., Loannidis M.B., and Kostazos P.K., “Crushing of hybrid square sandwich composite vehicle hollow bodyshells with reinforced core subjected to axial loading: numerical simulation”, Composite Structures, 61 (3), 175-186, 2003.
  • 4. El-Hage H., Mallick P. K., and Zamani N., “Numerical modelling of quasi-static axial crush of square aluminium-composite hybrid tubes”, International Journal of Crashworthiness, 9 (6), 653-664, 2004.
  • 5. Shen Q., Wang J., Wang Y., and Wang F., “Analytical modelling and design of partially CFRP-wrapped thin-walled circular NCFST stub columns under axial compression”, Thin-Walled Structures, 144, 106276, 2019.
  • 6. Mamalis A. G., Manolakos D. E., Demosthenous G. A., and Ioannidis M. B., “Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells”, International Journal of Impact Engineering, 19(5-6), 477-492, 1997.
  • 7. Hesse S. H., Lukaszewicz D. J., and Duddeck F., “A method to reduce design complexity of automotive composite structures with respect to crashworthiness”, Composite Structures, 129, 236-249, 2015.
  • 8. Jacob G. C., Fellers J. F., Simunovic S., and Starbuck J. M., “Energy absorption in polymer composites for automotive crashworthiness”, Journal of composite materials, 36(7), 813-850, 2002.
  • 9. Bouchet J., Jacquelin E., and Hamelin P., “Static and dynamic behavior of combined composite aluminium tube for automotive applications”, Composites science and technology, 60 (10), 1891-1900, 2000.
  • 10. Bisagni C., Di Pietro G., Fraschini L., and Terletti D., “Progressive crushing of fiber-reinforced composite structural components of a Formula One racing car”, Composite structures, 68(4), 491-503, 2005.
  • 11. Wang J., Yang N., Zhao J., Wang D., Wang Y., Li K., and Wang B., “Design and experimental verification of composite impact attenuator for racing vehicles”, Composite Structures, 141, 39-49, 2016.
  • 12. Wang K., Kelly D., and Dutton S., “Multi-objective optimisation of composite aerospace structures”, Composite Structures, 57(1-4), 141-148, 2002.
  • 13. Greenhalgh E., and Hiley M., “The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures, Composites part A: applied science and manufacturing”, 34(2), 151-161, 2003.
  • 14. Morozov E. V., Lopatin A. V., and Taygin V. B., “Design, analysis, manufacture and testing of composite corrugated horn for the spacecraft antenna system”, Composite Structures, 136, 505-512, 2016.
  • 15. Lopatin A. V., Morozov E. V., and Shatov A. V., “Axial deformability of the composite lattice cylindrical shell under compressive loading: Application to a load-carrying spacecraft tubular body”, Composite Structures, 146, 201-206, 2016.
  • 16. Zhu G., Sun G., Yu H., Li S., and Li Q., “Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading”, International Journal of Mechanical Sciences, 135, 458-483, 2018.
  • 17. Zhu G., Sun G., Liu Q., Li G., and Li Q., “On crushing characteristics of different configurations of metal-composites hybrid tubes”, Composite Structures, 175, 58-69, 2017.
  • 18. Yu H., Shi H., and Chen S., “A novel multi-cell CFRP/AA6061 hybrid tube and its structural multiobjective optimization”, Composite Structures, 209, 579-589, 2019.
  • 19. Shin K. C., Lee J. J., Kim K. H., Song M. C., and Huh J. S., “Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability”, Composite structures, 57 (1-4), 279-287, 2002.
  • 20. Sokolinsky V. S., Indermuehle K. C., and Hurtado J. A., “Numerical simulation of the crushing process of a corrugated composite plate”, Composites Part A: Applied Science and Manufacturing, 42 (9), 1119-1126, 2011.
  • 21. Mamalis A. G., Manolakos D. E., Loannidis M. B., Kostazos P. K., and Papapostolou D. P., “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modelling”, Composite structures, 58(4), 571-582, 2002.
  • 22. Boria S., Scattina A., and Belingardi G., “Axial energy absorption of CFRP truncated cones”, Composite Structures, 130, 18-28. 2015.
  • 23. Zhao X., Zhu G., Zhou C., and Yu Q, “Crashworthiness analysis and design of composite tapered tubes under multiple load cases”, Composite Structures, 222, 110920, 2019.
  • 24. Kathiresan M., and Manisekar K., “Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading”, Composite Structures, 136, 86-100, 2016.
  • 25. Kathiresan M., Manisekar K., and Manikandan V., “Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression”, Composite Structures, 108, 584-599, 2014.
  • 26. Reuter C., and Tröster T., “Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact”, Thin-Walled Structures, 117, 1-9, 2017.
  • 27. Zhu G., Sun G., Yu H., Li S., and Li Q., “Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading”, International Journal of Mechanical Sciences, 135, 458-483, 2018.
  • 28. Mirzaei M., Shakeri M., Sadighi M., and Akbarshahi H., “Experimental and analytical assessment of axial crushing of circular hybrid tubes under quasi-static load”, Composite Structures, 94 (6), 1959-1966, 2012.
  • 29. El-Hage H., Mallick P. K., and Zamani N., “A numerical study on the quasi-static axial crush characteristics of square aluminum–composite hybrid tubes”, Composite structures, 73 (4), 505-514, 2006.
  • 30. Costas M., Díaz J., Romera L. E., Hernández S., and Tielas A., “Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers”, International Journal of Impact Engineering, 62, 166-181, 2013.
  • 31. Esnaola A., Ulacia I., Aretxabaleta L., Aurrekoetxea J., and Gallego I., “Quasi-static crush energy absorption capability of E-glass/polyester and hybrid E-glass–basalt/polyester composite structures”, Materials & Design, 76, 18-25, 2015.
  • 32. Hu D. Y., Luo M., and Yang J. L., “Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes”, International journal of crashworthiness, 15 (4), 401-412, 2010.
  • 33. Zhou H., Attard T. L., Dhiradhamvit K., Wang Y., and Erdman D., “Crashworthiness characteristics of a carbon fiber reinforced dual-phase epoxy–polyurea hybrid matrix composite”, Composites Part B: Engineering, 71, 17-27, 2015.
  • 34. Song H. W., Wan Z. M., Xie Z. M., and Du X. W., “Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes”, International Journal of Impact Engineering, 24 (4), 385-401, 2000.
  • 35. Zhang Z., Sun W., Zhao Y., and Hou S., “Crashworthiness of different composite tubes by experiments and simulations”, Composites Part B: Engineering, 143, 86-95, 2018.
  • 36. Nagel G. M., and Thambiratnam D. P., “Dynamic simulation and energy absorption of tapered tubes under impact loading”, International Journal of Crashworthiness, 9 (4), 389-399, 2004.

Effect of taper angle on crashworthiness performance in hybrid tubes

Year 2020, Volume: 9 Issue: 1, 11 - 19, 17.02.2020
https://doi.org/10.18245/ijaet.638953

Abstract

The present paper dealt with the finite element analysis (FE) analyzing the taper angle design of aluminum/E-glass fiber reinforced polymer hybrid tubes. This study investigated the crushing characteristics involving peak crush force (PCF), crush force efficiency (CFE) and specific energy absorption (SEA) capacity of thirty different configurations of hybrid tubes. Three types of geometries were studied numerically, including circular, square and hexagonal. The structures evaluated included circular hybrid tubes fabricated with aluminum alloy and composite. The hybrid structures were subjected to axial impact loads using a 750-kg rigid impactor with an initial velocity of 15 m/s. It was found that the crashworthiness performance increased with increasing taper angle. The SEA and CFE values of the circular hybrid tube with a 10° taper angle were high in the other square and hexagonal hybrid tubes. That hybrid structure can preferable as impact energy absorber due to the ability to withstand axial impact loads effectively.

References

  • 1. Mamalis A.G., Manolakos D.E., Loannidis M.B., and P.K. Kostazos, “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: Experimental”, International Journal of Crashworthiness, 5(3), 315-332, 2000.
  • 2. Kim H. C., Shin D. K., Lee J. J., and Kwon J. B., “Crashworthiness of aluminum/CFRP square hollow section beam under axial impact loading for crash box application”, Composite Structures 112, 1-10, 2014.
  • 3. Mamalis A.G., Manolakos D.E., Loannidis M.B., and Kostazos P.K., “Crushing of hybrid square sandwich composite vehicle hollow bodyshells with reinforced core subjected to axial loading: numerical simulation”, Composite Structures, 61 (3), 175-186, 2003.
  • 4. El-Hage H., Mallick P. K., and Zamani N., “Numerical modelling of quasi-static axial crush of square aluminium-composite hybrid tubes”, International Journal of Crashworthiness, 9 (6), 653-664, 2004.
  • 5. Shen Q., Wang J., Wang Y., and Wang F., “Analytical modelling and design of partially CFRP-wrapped thin-walled circular NCFST stub columns under axial compression”, Thin-Walled Structures, 144, 106276, 2019.
  • 6. Mamalis A. G., Manolakos D. E., Demosthenous G. A., and Ioannidis M. B., “Analytical modelling of the static and dynamic axial collapse of thin-walled fibreglass composite conical shells”, International Journal of Impact Engineering, 19(5-6), 477-492, 1997.
  • 7. Hesse S. H., Lukaszewicz D. J., and Duddeck F., “A method to reduce design complexity of automotive composite structures with respect to crashworthiness”, Composite Structures, 129, 236-249, 2015.
  • 8. Jacob G. C., Fellers J. F., Simunovic S., and Starbuck J. M., “Energy absorption in polymer composites for automotive crashworthiness”, Journal of composite materials, 36(7), 813-850, 2002.
  • 9. Bouchet J., Jacquelin E., and Hamelin P., “Static and dynamic behavior of combined composite aluminium tube for automotive applications”, Composites science and technology, 60 (10), 1891-1900, 2000.
  • 10. Bisagni C., Di Pietro G., Fraschini L., and Terletti D., “Progressive crushing of fiber-reinforced composite structural components of a Formula One racing car”, Composite structures, 68(4), 491-503, 2005.
  • 11. Wang J., Yang N., Zhao J., Wang D., Wang Y., Li K., and Wang B., “Design and experimental verification of composite impact attenuator for racing vehicles”, Composite Structures, 141, 39-49, 2016.
  • 12. Wang K., Kelly D., and Dutton S., “Multi-objective optimisation of composite aerospace structures”, Composite Structures, 57(1-4), 141-148, 2002.
  • 13. Greenhalgh E., and Hiley M., “The assessment of novel materials and processes for the impact tolerant design of stiffened composite aerospace structures, Composites part A: applied science and manufacturing”, 34(2), 151-161, 2003.
  • 14. Morozov E. V., Lopatin A. V., and Taygin V. B., “Design, analysis, manufacture and testing of composite corrugated horn for the spacecraft antenna system”, Composite Structures, 136, 505-512, 2016.
  • 15. Lopatin A. V., Morozov E. V., and Shatov A. V., “Axial deformability of the composite lattice cylindrical shell under compressive loading: Application to a load-carrying spacecraft tubular body”, Composite Structures, 146, 201-206, 2016.
  • 16. Zhu G., Sun G., Yu H., Li S., and Li Q., “Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading”, International Journal of Mechanical Sciences, 135, 458-483, 2018.
  • 17. Zhu G., Sun G., Liu Q., Li G., and Li Q., “On crushing characteristics of different configurations of metal-composites hybrid tubes”, Composite Structures, 175, 58-69, 2017.
  • 18. Yu H., Shi H., and Chen S., “A novel multi-cell CFRP/AA6061 hybrid tube and its structural multiobjective optimization”, Composite Structures, 209, 579-589, 2019.
  • 19. Shin K. C., Lee J. J., Kim K. H., Song M. C., and Huh J. S., “Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability”, Composite structures, 57 (1-4), 279-287, 2002.
  • 20. Sokolinsky V. S., Indermuehle K. C., and Hurtado J. A., “Numerical simulation of the crushing process of a corrugated composite plate”, Composites Part A: Applied Science and Manufacturing, 42 (9), 1119-1126, 2011.
  • 21. Mamalis A. G., Manolakos D. E., Loannidis M. B., Kostazos P. K., and Papapostolou D. P., “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modelling”, Composite structures, 58(4), 571-582, 2002.
  • 22. Boria S., Scattina A., and Belingardi G., “Axial energy absorption of CFRP truncated cones”, Composite Structures, 130, 18-28. 2015.
  • 23. Zhao X., Zhu G., Zhou C., and Yu Q, “Crashworthiness analysis and design of composite tapered tubes under multiple load cases”, Composite Structures, 222, 110920, 2019.
  • 24. Kathiresan M., and Manisekar K., “Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading”, Composite Structures, 136, 86-100, 2016.
  • 25. Kathiresan M., Manisekar K., and Manikandan V., “Crashworthiness analysis of glass fibre/epoxy laminated thin walled composite conical frusta under axial compression”, Composite Structures, 108, 584-599, 2014.
  • 26. Reuter C., and Tröster T., “Crashworthiness and numerical simulation of hybrid aluminium-CFRP tubes under axial impact”, Thin-Walled Structures, 117, 1-9, 2017.
  • 27. Zhu G., Sun G., Yu H., Li S., and Li Q., “Energy absorption of metal, composite and metal/composite hybrid structures under oblique crushing loading”, International Journal of Mechanical Sciences, 135, 458-483, 2018.
  • 28. Mirzaei M., Shakeri M., Sadighi M., and Akbarshahi H., “Experimental and analytical assessment of axial crushing of circular hybrid tubes under quasi-static load”, Composite Structures, 94 (6), 1959-1966, 2012.
  • 29. El-Hage H., Mallick P. K., and Zamani N., “A numerical study on the quasi-static axial crush characteristics of square aluminum–composite hybrid tubes”, Composite structures, 73 (4), 505-514, 2006.
  • 30. Costas M., Díaz J., Romera L. E., Hernández S., and Tielas A., “Static and dynamic axial crushing analysis of car frontal impact hybrid absorbers”, International Journal of Impact Engineering, 62, 166-181, 2013.
  • 31. Esnaola A., Ulacia I., Aretxabaleta L., Aurrekoetxea J., and Gallego I., “Quasi-static crush energy absorption capability of E-glass/polyester and hybrid E-glass–basalt/polyester composite structures”, Materials & Design, 76, 18-25, 2015.
  • 32. Hu D. Y., Luo M., and Yang J. L., “Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes”, International journal of crashworthiness, 15 (4), 401-412, 2010.
  • 33. Zhou H., Attard T. L., Dhiradhamvit K., Wang Y., and Erdman D., “Crashworthiness characteristics of a carbon fiber reinforced dual-phase epoxy–polyurea hybrid matrix composite”, Composites Part B: Engineering, 71, 17-27, 2015.
  • 34. Song H. W., Wan Z. M., Xie Z. M., and Du X. W., “Axial impact behavior and energy absorption efficiency of composite wrapped metal tubes”, International Journal of Impact Engineering, 24 (4), 385-401, 2000.
  • 35. Zhang Z., Sun W., Zhao Y., and Hou S., “Crashworthiness of different composite tubes by experiments and simulations”, Composites Part B: Engineering, 143, 86-95, 2018.
  • 36. Nagel G. M., and Thambiratnam D. P., “Dynamic simulation and energy absorption of tapered tubes under impact loading”, International Journal of Crashworthiness, 9 (4), 389-399, 2004.
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Article
Authors

Murat Altın

Publication Date February 17, 2020
Submission Date October 28, 2019
Published in Issue Year 2020 Volume: 9 Issue: 1

Cite

APA Altın, M. (2020). Effect of taper angle on crashworthiness performance in hybrid tubes. International Journal of Automotive Engineering and Technologies, 9(1), 11-19. https://doi.org/10.18245/ijaet.638953
AMA Altın M. Effect of taper angle on crashworthiness performance in hybrid tubes. International Journal of Automotive Engineering and Technologies. February 2020;9(1):11-19. doi:10.18245/ijaet.638953
Chicago Altın, Murat. “Effect of Taper Angle on Crashworthiness Performance in Hybrid Tubes”. International Journal of Automotive Engineering and Technologies 9, no. 1 (February 2020): 11-19. https://doi.org/10.18245/ijaet.638953.
EndNote Altın M (February 1, 2020) Effect of taper angle on crashworthiness performance in hybrid tubes. International Journal of Automotive Engineering and Technologies 9 1 11–19.
IEEE M. Altın, “Effect of taper angle on crashworthiness performance in hybrid tubes”, International Journal of Automotive Engineering and Technologies, vol. 9, no. 1, pp. 11–19, 2020, doi: 10.18245/ijaet.638953.
ISNAD Altın, Murat. “Effect of Taper Angle on Crashworthiness Performance in Hybrid Tubes”. International Journal of Automotive Engineering and Technologies 9/1 (February 2020), 11-19. https://doi.org/10.18245/ijaet.638953.
JAMA Altın M. Effect of taper angle on crashworthiness performance in hybrid tubes. International Journal of Automotive Engineering and Technologies. 2020;9:11–19.
MLA Altın, Murat. “Effect of Taper Angle on Crashworthiness Performance in Hybrid Tubes”. International Journal of Automotive Engineering and Technologies, vol. 9, no. 1, 2020, pp. 11-19, doi:10.18245/ijaet.638953.
Vancouver Altın M. Effect of taper angle on crashworthiness performance in hybrid tubes. International Journal of Automotive Engineering and Technologies. 2020;9(1):11-9.