Research Article
BibTex RIS Cite

Otonom Robotlar İçin Farklı SLAM Paketlerinin Kullanımı ve Yapısal Benzerlik Endeksi Ölçüsü Kullanarak Performans Analizi

Year 2025, Volume: 14 Issue: 3, 181 - 189, 30.09.2025
https://doi.org/10.18245/ijaet.1634390

Abstract

Bu çalışmada, otonom mobil aracın diferansiyel sürüşü ile ilgili olarak, robot lokalizasyonu ve haritalaması üzerinde performans çalışması yapılmaktadır. Literatürde bu kavram kısaca SLAM olarak isimlendirilmektedir. Bir robotun belli bir başlangıç noktasından istenilen hedef noktaya gidebilmesi ve o süreç içinde istenilen görevleri yerine getirebilmesi için robotun hareketini gerçekleştireceği bir çevre temsiline yani haritaya ihtiyacı vardır. Robotun düzgün bir haritada gitmesi, navigasyon sürecinde varış süresi ve pürüzsüz bir sürüş için önem arz etmektedir. Robot için harita çıkarma işlemi çeşitli sensörlerin kullanılması ve farklı algoritmaların işlenmesi ile halledilmektedir. Günümüzde robotun haritasının çıkarılması işlemi Robot İşletim Sistemleri (ROS) üzerinde yapılmaktadır. ROS şu an için en güncel versiyon olarak ROS2 ve ROS2 de kullanılan en güncel dağıtım ise Humble dağıtımı olarak geçmektedir. Bu çalışmanın amacı, ROS2 için yapılandırılmış en güncel SLAM paketlerinin karşılaştırmalı performans analizini deneysel ortamda bir araç üzerinde yapmak ve çıktılarını karşılaştırmalı olarak ortaya koymaktır. Deneysel çalışmada, “iRobot” firmasının ROS2 geliştiricileri için üretmiş olduğu Create-3 robotu kullanılmaktadır. Çalışmada robot 3 farklı odada, farklı koşullarda, aynı hız profili ve 3 farklı SLAM paketi kullanarak analiz edilmektedir. Elde edilen sonuçlar çıkarılan haritalarda Yapısal Benzerlik Endeksi Ölçüsü (SSIM) kullanılarak referans haritayla karşılaştırılmakta ve SLAM paketlerinin performansları tespit edilmektedir. Sonuç olarak otonom robotlar için en önemli konulardan biri olan haritalama ile ilgili güncel yaklaşımlar geliştirilmekte ve SLAM yazılım paketleri kullanılarak yöntem ve yazılım konusunda somut çıktılar üretilmektedir.

References

  • Panigrahi, P. K., & Bisoy, S. K., “Localization Strategies for Autonomous Mobile Robots: A Review”, Journal of King Saud University-Computer and Information Sciences, Vol. 34, No. 8, pp. 6019-6039, 2022.
  • Leonard, J. J., & Durrant-Whyte, H. F., “Simultaneous Map Building and Localization for an Autonomous Mobile Robot”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vol. 3, pp. 1442-1447, 1991.
  • Taheri, H., & Xia, Z. C., “SLAM; Definition and Evolution”, Engineering Applications of Artificial Intelligence, 97, 1–25, 2021.
  • Leonard, J. J., & Durrant-Whyte, H. F., “Mobile robot localization by tracking geometric beacons”, IEEE Transactions on Robotics and Automation, 7(3), 376–382, 1991.
  • Bettencourt, R., Serra, R., Lima, P. U., & Vale, A., “Comparison of Different LiDAR Sensors in SLAM: Criteria Formulation and Results”, 2025 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 1-6, April 2025.
  • Kim, H., Park, D., & Lee, S., “Benchmarking SLAM Toolboxes on ROS2 with Multisensor Fusion for Indoor Navigation”, Sensors, 24(9), Article ID 3981, 2024.
  • Qiu, Z., Wang, H., & Chen, Y., “Comparative Evaluation of ROS2-based SLAM Algorithms in Highly Dynamic Environments”, IEEE Transactions on Robotics, 41(3), 580–592, 2025.
  • Gonzalez, L., & Pereira, A., “Evaluating SLAM Performance on Resource-Constrained Robots Using ROS2”, International Journal of Advanced Robotic Systems, 22(1), 45–59, 2025.
  • Mertyuz, İ., Yakut, O., & Taşar, B., “Mobil Robotlar için ROS Kullanılarak 2B SLAM Algoritmalarının Karşılaştırılması”, Trakya Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, No. 2, pp. 29-38, 2023.
  • Li, F., Zhang, X., & Sun, J., “Performance Analysis of Real-Time SLAM Techniques for Autonomous Service Robots”, Robotics and Autonomous Systems, 172, Article ID 104546, 2024.
  • Kumar, N. S. P., Chandra, G. N., Sekhar, P., Sola, R., & KG, M., “Comparison of 2D & 3D LiDAR SLAM Algorithms Based on Performance Metrics”, International Conference on Innovation in Computing and Engineering (ICE), 1–6, 2025.
  • Bhushan, U. P., Innocent, N., & Laddi, A., “A Comparative Study of 2D SLAM Algorithms for ROS-Based Mapping”, International Conference on Signal Processing, Computing and Control (ISPCC), 900–906, 2025.
  • Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W., “A tutorial on graph-based SLAM”, IEEE Intelligent Transportation Systems Magazine, Vol. 2, No. 4, pp. 31-43, 2010.
  • Montemerlo, M., & Thrun, S., “FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics ”, Springer Science & Business Medi, 2007.
  • Le Roux, J., “An Introduction to Kalman Filter”, ASME Journal of Basic Engineering, Vol. 82, pp. 34–45, 1960.
  • Kalman, Rudolph Emil., “A new approach to linear filtering and prediction problems”, J. Fluids Eng, Vol. 82, No. 1, pp. 35-45, 1960.
  • Becker, Alex., “Kalman Filter from the Ground Up”, NET, 2023.
  • Khodarahmi, Masoud, and Vafa Maihami., “A Review on Kalman Filter Models.”, Archives of Computational Methods in Engineering, Vol. 30, No. 1, pp. 727-747, 2023.
  • Fox, Dieter, et al., “Particle filters for mobile robot localization. Sequential Monte Carlo methods in practice”, Springer, 2001.
  • Sankalprajan, P., Sharma, T., Perur, H. D., & Pagala, P. S., “Comparative Analysis of ROS Based 2D and 3D SLAM Algorithms for Autonomous Ground Vehicles”, 2020 International Conference for Emerging Technology (INCET), IEEE, pp. 1-6, 2020.
  • Nilsson, Jim, and Tomas Akenine-Möller., "Understanding ssim", Cornell University, arXiv preprint, Vol. 2006.13846, pp. 1-8, 2020.
  • Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J., “Sensor and sensor fusion technology in autonomous vehicles: A review”, Sensors, Vol. 21, No. 6, 2021.
  • Alatise, M. B., & Hancke, G. P., “A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods”, IEEE Access, Vol. 8, 2020.
  • https://docs.ros.org/en/humble/index.html, 15/9/2024.

Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure

Year 2025, Volume: 14 Issue: 3, 181 - 189, 30.09.2025
https://doi.org/10.18245/ijaet.1634390

Abstract

In this study, a performance analysis is conducted on robot localization and mapping in the context of differential-drive autonomous mobile robots, a field commonly referred to as Simultaneous Localization and Mapping (SLAM). For a mobile robot to move from a starting point to a target location and complete assigned tasks effectively, it requires a reliable environmental representation namely, a map. The creation of such a map is managed through various sensor inputs and algorithmic processes, predominantly implemented within Robot Operating Systems (ROS). With the transition from ROS1 to the more advanced ROS2 framework, SLAM software packages have also evolved. This study evaluates and compares the performance of three SLAM packages Gmapping, Cartographer, and SLAM Toolbox within the ROS2 environment using the Create-3 mobile robot platform, which is specifically developed for ROS2 applications. The experiments are conducted in three different indoor environments with varying characteristics, including a narrow, obstacle-dense room; a corridor; and a wide room with sparse features. All trials are performed using a consistent speed profile and sensor setup. Performance is assessed based on the Structural Similarity Index Measure (SSIM) between the generated maps and manually created reference maps, as well as mapping speed. The results indicate that SLAM Toolbox consistently outperformed the other packages, achieving the highest SSIM values (particularly 0.72 in the wide-room scenario) and delivering more accurate maps in complex environments. Cartographer SLAM performed well in corridor-like spaces but exhibited decreased accuracy in larger, obstacle-rich environments. Gmapping provided relatively stable results but lagged behind in terms of fine-grained mapping precision. These findings demonstrate that SLAM Toolbox is better suited for applications requiring high-accuracy 2D mapping in ROS2-based systems. The study offers a comprehensive comparison framework and concrete performance data, guiding researchers and developers in selecting the most suitable SLAM approach based on environmental conditions and system requirements.

References

  • Panigrahi, P. K., & Bisoy, S. K., “Localization Strategies for Autonomous Mobile Robots: A Review”, Journal of King Saud University-Computer and Information Sciences, Vol. 34, No. 8, pp. 6019-6039, 2022.
  • Leonard, J. J., & Durrant-Whyte, H. F., “Simultaneous Map Building and Localization for an Autonomous Mobile Robot”, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vol. 3, pp. 1442-1447, 1991.
  • Taheri, H., & Xia, Z. C., “SLAM; Definition and Evolution”, Engineering Applications of Artificial Intelligence, 97, 1–25, 2021.
  • Leonard, J. J., & Durrant-Whyte, H. F., “Mobile robot localization by tracking geometric beacons”, IEEE Transactions on Robotics and Automation, 7(3), 376–382, 1991.
  • Bettencourt, R., Serra, R., Lima, P. U., & Vale, A., “Comparison of Different LiDAR Sensors in SLAM: Criteria Formulation and Results”, 2025 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 1-6, April 2025.
  • Kim, H., Park, D., & Lee, S., “Benchmarking SLAM Toolboxes on ROS2 with Multisensor Fusion for Indoor Navigation”, Sensors, 24(9), Article ID 3981, 2024.
  • Qiu, Z., Wang, H., & Chen, Y., “Comparative Evaluation of ROS2-based SLAM Algorithms in Highly Dynamic Environments”, IEEE Transactions on Robotics, 41(3), 580–592, 2025.
  • Gonzalez, L., & Pereira, A., “Evaluating SLAM Performance on Resource-Constrained Robots Using ROS2”, International Journal of Advanced Robotic Systems, 22(1), 45–59, 2025.
  • Mertyuz, İ., Yakut, O., & Taşar, B., “Mobil Robotlar için ROS Kullanılarak 2B SLAM Algoritmalarının Karşılaştırılması”, Trakya Üniversitesi Mühendislik Bilimleri Dergisi, Vol. 24, No. 2, pp. 29-38, 2023.
  • Li, F., Zhang, X., & Sun, J., “Performance Analysis of Real-Time SLAM Techniques for Autonomous Service Robots”, Robotics and Autonomous Systems, 172, Article ID 104546, 2024.
  • Kumar, N. S. P., Chandra, G. N., Sekhar, P., Sola, R., & KG, M., “Comparison of 2D & 3D LiDAR SLAM Algorithms Based on Performance Metrics”, International Conference on Innovation in Computing and Engineering (ICE), 1–6, 2025.
  • Bhushan, U. P., Innocent, N., & Laddi, A., “A Comparative Study of 2D SLAM Algorithms for ROS-Based Mapping”, International Conference on Signal Processing, Computing and Control (ISPCC), 900–906, 2025.
  • Grisetti, G., Kümmerle, R., Stachniss, C., & Burgard, W., “A tutorial on graph-based SLAM”, IEEE Intelligent Transportation Systems Magazine, Vol. 2, No. 4, pp. 31-43, 2010.
  • Montemerlo, M., & Thrun, S., “FastSLAM: A Scalable Method for the Simultaneous Localization and Mapping Problem in Robotics ”, Springer Science & Business Medi, 2007.
  • Le Roux, J., “An Introduction to Kalman Filter”, ASME Journal of Basic Engineering, Vol. 82, pp. 34–45, 1960.
  • Kalman, Rudolph Emil., “A new approach to linear filtering and prediction problems”, J. Fluids Eng, Vol. 82, No. 1, pp. 35-45, 1960.
  • Becker, Alex., “Kalman Filter from the Ground Up”, NET, 2023.
  • Khodarahmi, Masoud, and Vafa Maihami., “A Review on Kalman Filter Models.”, Archives of Computational Methods in Engineering, Vol. 30, No. 1, pp. 727-747, 2023.
  • Fox, Dieter, et al., “Particle filters for mobile robot localization. Sequential Monte Carlo methods in practice”, Springer, 2001.
  • Sankalprajan, P., Sharma, T., Perur, H. D., & Pagala, P. S., “Comparative Analysis of ROS Based 2D and 3D SLAM Algorithms for Autonomous Ground Vehicles”, 2020 International Conference for Emerging Technology (INCET), IEEE, pp. 1-6, 2020.
  • Nilsson, Jim, and Tomas Akenine-Möller., "Understanding ssim", Cornell University, arXiv preprint, Vol. 2006.13846, pp. 1-8, 2020.
  • Yeong, D. J., Velasco-Hernandez, G., Barry, J., & Walsh, J., “Sensor and sensor fusion technology in autonomous vehicles: A review”, Sensors, Vol. 21, No. 6, 2021.
  • Alatise, M. B., & Hancke, G. P., “A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods”, IEEE Access, Vol. 8, 2020.
  • https://docs.ros.org/en/humble/index.html, 15/9/2024.
There are 24 citations in total.

Details

Primary Language English
Subjects Automotive Mechatronics and Autonomous Systems
Journal Section Article
Authors

Koray Erhan 0000-0003-0505-9389

Mehmet Zeki Sildir 0009-0006-5993-2744

Publication Date September 30, 2025
Submission Date February 14, 2025
Acceptance Date July 29, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Erhan, K., & Sildir, M. Z. (2025). Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure. International Journal of Automotive Engineering and Technologies, 14(3), 181-189. https://doi.org/10.18245/ijaet.1634390
AMA Erhan K, Sildir MZ. Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure. International Journal of Automotive Engineering and Technologies. September 2025;14(3):181-189. doi:10.18245/ijaet.1634390
Chicago Erhan, Koray, and Mehmet Zeki Sildir. “Performance Analysis of Different SLAM Packages in Autonomous Robots Using Structural Similarity Index Measure”. International Journal of Automotive Engineering and Technologies 14, no. 3 (September 2025): 181-89. https://doi.org/10.18245/ijaet.1634390.
EndNote Erhan K, Sildir MZ (September 1, 2025) Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure. International Journal of Automotive Engineering and Technologies 14 3 181–189.
IEEE K. Erhan and M. Z. Sildir, “Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure”, International Journal of Automotive Engineering and Technologies, vol. 14, no. 3, pp. 181–189, 2025, doi: 10.18245/ijaet.1634390.
ISNAD Erhan, Koray - Sildir, Mehmet Zeki. “Performance Analysis of Different SLAM Packages in Autonomous Robots Using Structural Similarity Index Measure”. International Journal of Automotive Engineering and Technologies 14/3 (September2025), 181-189. https://doi.org/10.18245/ijaet.1634390.
JAMA Erhan K, Sildir MZ. Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure. International Journal of Automotive Engineering and Technologies. 2025;14:181–189.
MLA Erhan, Koray and Mehmet Zeki Sildir. “Performance Analysis of Different SLAM Packages in Autonomous Robots Using Structural Similarity Index Measure”. International Journal of Automotive Engineering and Technologies, vol. 14, no. 3, 2025, pp. 181-9, doi:10.18245/ijaet.1634390.
Vancouver Erhan K, Sildir MZ. Performance analysis of different SLAM packages in autonomous robots using structural similarity index measure. International Journal of Automotive Engineering and Technologies. 2025;14(3):181-9.