Research Article
BibTex RIS Cite

Comparative evaluation of base catalysts in biodiesel production from waste frying oil

Year 2025, Volume: 14 Issue: 3, 142 - 153, 30.09.2025
https://doi.org/10.18245/ijaet.1713346

Abstract

The urgent need for alternative fuels has propelled biodiesel research into the spotlight, particularly focusing on cost-effective and sustainable feedstocks such as waste frying oil. This study investigates the technical and practical impact of four different base catalysts (NaOH, KOH, K₂CO₃, and Ca(OCH₃)₂) on the transesterification efficiency of waste frying oil. Experimental trials were systematically conducted by altering catalyst concentration and methanol-to-oil molar ratios to determine optimal production conditions. Statistical analyses confirmed that all process parameters had a significant impact on the biodiesel yield. Technically, NaOH and KOH yielded the highest conversion rates, while K₂CO₃ showed markedly lower performance. The study supports the process's cost-effective goal by demonstrating that NaOH and KOH, which provided the highest yields, are also the most economical and practical options due to their low cost and industrial availability. The developed multiple linear regression model affirmed the collective influence of the examined parameters with a strong predictive capability (R² = 0.933). Ultimately, this work highlights both the technical superiority and economic practicality of strong bases, particularly NaOH and KOH, for efficient biodiesel synthesis from waste frying oil, contributing to optimized processes that support the transition to greener energy alternatives.

References

  • Rial, R.C., Biofuels versus climate change: Exploring potentials and challenges in the energy transition. Renew, Sustain, Energy Rev, 196, 114369, 2024. https://doi.org/10.1016/j.rser.2024.114369
  • Lopresto, C.G., Sustainable biodiesel production from waste cooking oils for energetically independent small communities: an overview, Int. J. Environ Sci Technol, 22, 1953–1974, 2025. https://doi.org/10.1007/s13762-024-05779-2
  • Balki, M.K., Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode. Int. J. Automot. Eng. Technol, 13, 54–62, 2024. https://doi.org/10.18245/ijaet.1440793
  • Ali Ijaz Malik, M., Zeeshan, S., Khubaib, M., Ikram, A., Hussain, F., Yassin, H., Qazi, A., A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Convers. Manag. X. 23, 100675, 2024. https://doi.org/10.1016/j.ecmx.2024.100675
  • Liu, Y., Cruz-Morales, P., Zargar, A., Belcher, M.S., Pang, B., Englund, E., Dan, Q., Yin, K., Keasling, J.D., Biofuels for a sustainable future. Cell. 184, 1636–1647, 2021. https://doi.org/10.1016/j.cell.2021.01.052
  • Mandal, Bi., Palit, S., Chowdhuri, A.K., Mandal, B.K., Environmental impact of using biodiesel as fuel in transportation: a review. Int. J. Glob. Warm. 3, 232, 2011. https://doi.org/10.1504/IJGW.2011.043421
  • Suhara, A., Karyadi, Herawan, S.G., Tirta, A., Idris, M., Roslan, M.F., Putra, N.R., Hananto, A.L., Veza, I., Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel. Clean Technol. 6, 886–906, 2024. https://doi.org/10.3390/cleantechnol6030045
  • Luque, R., Lovett, J.C., Datta, B., Clancy, J., Campelo, J.M., Romero, A.A., Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ. Sci. 3, 1706, 2010. https://doi.org/10.1039/c0ee00085j
  • Mishra, V.K., Goswami, R., A review of production, properties and advantages of biodiesel. Biofuels. 9, 273–289, 2018. https://doi.org/10.1080/17597269.2017.1336350
  • Sabudak, T., Yildiz, M., Biodiesel production from waste frying oils and its quality control. Waste Manag. 30, 799–803, 2010. https://doi.org/10.1016/j.wasman.2010.01.007
  • Linganiso, E.C., Tlhaole, B., Magagula, L.P., Dziike, S., Linganiso, L.Z., Motaung, T.E., Moloto, N., Tetana, Z.N., Biodiesel Production from Waste Oils: A South African Outlook. Sustainability. 14, 1983, 2022. https://doi.org/10.3390/su14041983
  • Encinar, J.M., González, J.F., Martínez, G., Nogales-Delgado, S., Transesterification of Soybean Oil through Different Homogeneous Catalysts: Kinetic Study. Catalysts. 12, 146, 2022. https://doi.org/10.3390/catal12020146
  • Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145
  • Jamil, F., Al-Haj, L., Al-Muhtaseb, A.H., Al-Hinai, M.A., Baawain, M., Rashid, U., Ahmad, M.N.M., Current scenario of catalysts for biodiesel production: a critical review. Rev. Chem. Eng. 34, 267–297, 2018. https://doi.org/10.1515/revce-2016-0026
  • Mendow, G., Veizaga, N.S., Querini, C.A., Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst. Bioresour. Technol. 102, 6385–6391, 2011. https://doi.org/10.1016/j.biortech.2011.01.072
  • Balki, M.K., Determination of Optimum Operating Parameters in a Non-Road Diesel Engine Fueled with 1-Heptanol/Biodiesel at Different Injection Pressures and Advances. Energies. 17, 1588, 2024. https://doi.org/10.3390/en17071588
  • Liu, C., Lu, Z., Duan, J., Dou, H., Cao, Z., Xu, X., Zhang, X., Chen, Z., Xiao, W., Transesterification of DMC with ethanol over K2CO3/Al2O3: The structure-performance relationship and catalytic mechanism. J. CO2 Util. 84, 102846, 2024. https://doi.org/10.1016/j.jcou.2024.102846
  • Nyepetsi, M., Mbaiwa, F., Oyetunji, O.A., Dzade, N.Y., De Leeuw, N.H., The Carbonate-catalyzed Transesterification of Sunflower Oil for Biodiesel Production: in situ Monitoring and Density Functional Theory Calculations. South Afr. J. Chem. 74, 2021. https://doi.org/10.17159/0379-4350/2021/v74a8
  • Thanh, L.T., Okitsu, K., Sadanaga, Y., Takenaka, N., Maeda, Y., Bandow, H., Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour. Technol. 101, 639–645, 2010. https://doi.org/10.1016/j.biortech.2009.08.050
  • Wahyono, Y., Hadiyanto, H., Budihardjo, M.A., Hariyono, Y., Baihaqi, R.A., Multifeedstock Biodiesel Production from a Blend of Five Oils through Transesterification with Variation of Moles Ratio of Oil: Methanol. Int. J. Technol. 13, 606, 2022. https://doi.org/10.14716/ijtech.v13i3.4804
  • Wang, Y., Liu, J., Gerken, H., Zhang, C., Hu, Q., Li, Y., Highly-efficient enzymatic conversion of crude algal oils into biodiesel. Bioresour. Technol. 172, 143–149, 2014. https://doi.org/10.1016/j.biortech.2014.09.003
  • Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145
  • Abusweireh, R.S., Rajamohan, N., Vasseghian, Y., Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel. 319, 123862, 2022. https://doi.org/10.1016/j.fuel.2022.123862
  • Thliveros, P., Uçkun Kiran, E., Webb, C., Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour. Technol. 157, 181–187, 2014. https://doi.org/10.1016/j.biortech.2014.01.111
  • Demirtaş, G., Effect of injection timing on performance and emissions of a CRDI diesel engine using biodiesel-n-octanol blend fuel. Positive Science International, 1(1), 24-35, 2025.

Biyodizel üretimi, baz katalizörler, atık kızartma yağı, transesterifikasyon, proses optimizasyonu

Year 2025, Volume: 14 Issue: 3, 142 - 153, 30.09.2025
https://doi.org/10.18245/ijaet.1713346

Abstract

Alternatif yakıtlara olan acil ihtiyaç, biyodizel araştırmalarını ön plana çıkarmış ve özellikle atık kızartma yağı gibi maliyet etkin ve sürdürülebilir hammaddelere odaklanılmasına neden olmuştur. Bu çalışma, NaOH, KOH, K₂CO₃ ve Ca(OCH₃)₂ gibi çeşitli homojen baz katalizörlerin atık kızartma yağı ile gerçekleştirilen transesterifikasyon verimliliği üzerindeki etkisini incelemektedir. Deneysel çalışmalar, katalizör konsantrasyonu ve metanol/yağ mol oranı değiştirilerek sistematik olarak yürütülmüş ve optimum üretim koşulları belirlenmiştir. Tek yönlü ANOVA ve Tukey HSD çoklu karşılaştırma testi gibi istatistiksel analizler, süreç parametrelerinin biyodizel dönüşüm verimi üzerinde anlamlı etkiler yarattığını doğrulamıştır. Test edilen katalizörler arasında, NaOH ve KOH en yüksek dönüşüm oranlarını sağlarken, K₂CO₃ belirgin şekilde daha düşük performans göstermiştir. Ayrıca, yüksek düzeyde açıklayıcılığa sahip (R² = 0.954) bir çoklu doğrusal regresyon modeli geliştirilmiş ve parametrelerin birlikte etkili olduğunu ortaya koymuştur. Parametre etkileşimlerini görselleştirmek amacıyla oluşturulan yüzey grafiklerinde, maksimum verim bölgeleri belirlenmiş ve özellikle katalizör yüklemesi ile metanol oranı arasındaki sinerjik etkileşimler vurgulanmıştır. Elde edilen sonuçlar, özellikle NaOH ve KOH gibi homojen katalizörlerin atık kızartma yağından verimli biyodizel üretimi için uygulanabilirliğini ortaya koymakta ve biyodizel üretim süreçlerinin optimizasyonuna katkı sağlayarak daha yeşil enerji alternatiflerine geçişi desteklemektedir.

References

  • Rial, R.C., Biofuels versus climate change: Exploring potentials and challenges in the energy transition. Renew, Sustain, Energy Rev, 196, 114369, 2024. https://doi.org/10.1016/j.rser.2024.114369
  • Lopresto, C.G., Sustainable biodiesel production from waste cooking oils for energetically independent small communities: an overview, Int. J. Environ Sci Technol, 22, 1953–1974, 2025. https://doi.org/10.1007/s13762-024-05779-2
  • Balki, M.K., Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode. Int. J. Automot. Eng. Technol, 13, 54–62, 2024. https://doi.org/10.18245/ijaet.1440793
  • Ali Ijaz Malik, M., Zeeshan, S., Khubaib, M., Ikram, A., Hussain, F., Yassin, H., Qazi, A., A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Convers. Manag. X. 23, 100675, 2024. https://doi.org/10.1016/j.ecmx.2024.100675
  • Liu, Y., Cruz-Morales, P., Zargar, A., Belcher, M.S., Pang, B., Englund, E., Dan, Q., Yin, K., Keasling, J.D., Biofuels for a sustainable future. Cell. 184, 1636–1647, 2021. https://doi.org/10.1016/j.cell.2021.01.052
  • Mandal, Bi., Palit, S., Chowdhuri, A.K., Mandal, B.K., Environmental impact of using biodiesel as fuel in transportation: a review. Int. J. Glob. Warm. 3, 232, 2011. https://doi.org/10.1504/IJGW.2011.043421
  • Suhara, A., Karyadi, Herawan, S.G., Tirta, A., Idris, M., Roslan, M.F., Putra, N.R., Hananto, A.L., Veza, I., Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel. Clean Technol. 6, 886–906, 2024. https://doi.org/10.3390/cleantechnol6030045
  • Luque, R., Lovett, J.C., Datta, B., Clancy, J., Campelo, J.M., Romero, A.A., Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ. Sci. 3, 1706, 2010. https://doi.org/10.1039/c0ee00085j
  • Mishra, V.K., Goswami, R., A review of production, properties and advantages of biodiesel. Biofuels. 9, 273–289, 2018. https://doi.org/10.1080/17597269.2017.1336350
  • Sabudak, T., Yildiz, M., Biodiesel production from waste frying oils and its quality control. Waste Manag. 30, 799–803, 2010. https://doi.org/10.1016/j.wasman.2010.01.007
  • Linganiso, E.C., Tlhaole, B., Magagula, L.P., Dziike, S., Linganiso, L.Z., Motaung, T.E., Moloto, N., Tetana, Z.N., Biodiesel Production from Waste Oils: A South African Outlook. Sustainability. 14, 1983, 2022. https://doi.org/10.3390/su14041983
  • Encinar, J.M., González, J.F., Martínez, G., Nogales-Delgado, S., Transesterification of Soybean Oil through Different Homogeneous Catalysts: Kinetic Study. Catalysts. 12, 146, 2022. https://doi.org/10.3390/catal12020146
  • Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145
  • Jamil, F., Al-Haj, L., Al-Muhtaseb, A.H., Al-Hinai, M.A., Baawain, M., Rashid, U., Ahmad, M.N.M., Current scenario of catalysts for biodiesel production: a critical review. Rev. Chem. Eng. 34, 267–297, 2018. https://doi.org/10.1515/revce-2016-0026
  • Mendow, G., Veizaga, N.S., Querini, C.A., Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst. Bioresour. Technol. 102, 6385–6391, 2011. https://doi.org/10.1016/j.biortech.2011.01.072
  • Balki, M.K., Determination of Optimum Operating Parameters in a Non-Road Diesel Engine Fueled with 1-Heptanol/Biodiesel at Different Injection Pressures and Advances. Energies. 17, 1588, 2024. https://doi.org/10.3390/en17071588
  • Liu, C., Lu, Z., Duan, J., Dou, H., Cao, Z., Xu, X., Zhang, X., Chen, Z., Xiao, W., Transesterification of DMC with ethanol over K2CO3/Al2O3: The structure-performance relationship and catalytic mechanism. J. CO2 Util. 84, 102846, 2024. https://doi.org/10.1016/j.jcou.2024.102846
  • Nyepetsi, M., Mbaiwa, F., Oyetunji, O.A., Dzade, N.Y., De Leeuw, N.H., The Carbonate-catalyzed Transesterification of Sunflower Oil for Biodiesel Production: in situ Monitoring and Density Functional Theory Calculations. South Afr. J. Chem. 74, 2021. https://doi.org/10.17159/0379-4350/2021/v74a8
  • Thanh, L.T., Okitsu, K., Sadanaga, Y., Takenaka, N., Maeda, Y., Bandow, H., Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour. Technol. 101, 639–645, 2010. https://doi.org/10.1016/j.biortech.2009.08.050
  • Wahyono, Y., Hadiyanto, H., Budihardjo, M.A., Hariyono, Y., Baihaqi, R.A., Multifeedstock Biodiesel Production from a Blend of Five Oils through Transesterification with Variation of Moles Ratio of Oil: Methanol. Int. J. Technol. 13, 606, 2022. https://doi.org/10.14716/ijtech.v13i3.4804
  • Wang, Y., Liu, J., Gerken, H., Zhang, C., Hu, Q., Li, Y., Highly-efficient enzymatic conversion of crude algal oils into biodiesel. Bioresour. Technol. 172, 143–149, 2014. https://doi.org/10.1016/j.biortech.2014.09.003
  • Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145
  • Abusweireh, R.S., Rajamohan, N., Vasseghian, Y., Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel. 319, 123862, 2022. https://doi.org/10.1016/j.fuel.2022.123862
  • Thliveros, P., Uçkun Kiran, E., Webb, C., Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour. Technol. 157, 181–187, 2014. https://doi.org/10.1016/j.biortech.2014.01.111
  • Demirtaş, G., Effect of injection timing on performance and emissions of a CRDI diesel engine using biodiesel-n-octanol blend fuel. Positive Science International, 1(1), 24-35, 2025.
There are 25 citations in total.

Details

Primary Language English
Subjects Automotive Combustion and Fuel Engineering
Journal Section Article
Authors

Hüseyin Söyler 0000-0002-1216-7049

Publication Date September 30, 2025
Submission Date June 3, 2025
Acceptance Date July 14, 2025
Published in Issue Year 2025 Volume: 14 Issue: 3

Cite

APA Söyler, H. (2025). Comparative evaluation of base catalysts in biodiesel production from waste frying oil. International Journal of Automotive Engineering and Technologies, 14(3), 142-153. https://doi.org/10.18245/ijaet.1713346
AMA Söyler H. Comparative evaluation of base catalysts in biodiesel production from waste frying oil. International Journal of Automotive Engineering and Technologies. September 2025;14(3):142-153. doi:10.18245/ijaet.1713346
Chicago Söyler, Hüseyin. “Comparative Evaluation of Base Catalysts in Biodiesel Production from Waste Frying Oil”. International Journal of Automotive Engineering and Technologies 14, no. 3 (September 2025): 142-53. https://doi.org/10.18245/ijaet.1713346.
EndNote Söyler H (September 1, 2025) Comparative evaluation of base catalysts in biodiesel production from waste frying oil. International Journal of Automotive Engineering and Technologies 14 3 142–153.
IEEE H. Söyler, “Comparative evaluation of base catalysts in biodiesel production from waste frying oil”, International Journal of Automotive Engineering and Technologies, vol. 14, no. 3, pp. 142–153, 2025, doi: 10.18245/ijaet.1713346.
ISNAD Söyler, Hüseyin. “Comparative Evaluation of Base Catalysts in Biodiesel Production from Waste Frying Oil”. International Journal of Automotive Engineering and Technologies 14/3 (September2025), 142-153. https://doi.org/10.18245/ijaet.1713346.
JAMA Söyler H. Comparative evaluation of base catalysts in biodiesel production from waste frying oil. International Journal of Automotive Engineering and Technologies. 2025;14:142–153.
MLA Söyler, Hüseyin. “Comparative Evaluation of Base Catalysts in Biodiesel Production from Waste Frying Oil”. International Journal of Automotive Engineering and Technologies, vol. 14, no. 3, 2025, pp. 142-53, doi:10.18245/ijaet.1713346.
Vancouver Söyler H. Comparative evaluation of base catalysts in biodiesel production from waste frying oil. International Journal of Automotive Engineering and Technologies. 2025;14(3):142-53.